• Title/Summary/Keyword: sub-MIC

Search Result 61, Processing Time 0.035 seconds

Antifungal Activity of Silver Salts of Keggin-Type Heteropolyacids Against Sporothrix spp.

  • Mathias, Luciana Da Silva;Almeida, Joao Carlos De Aquino;Passoni, Luis Cesar;Gossani, Cristiani Miranda David;Taveira, Gabriel Bonan;Gomes, Valdirene Moreira;Vieira-Da-Motta, Olney
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.4
    • /
    • pp.540-551
    • /
    • 2020
  • Sporotrichosis is a chronic and subacute mycosis causing epidemiological outbreaks involving sick cats and humans in southeastern Brazil. The systemic disease prevails in cats and in humans, with the symptoms restricted to the skin of immunocompetent individuals. Under these conditions, the prolonged treatment of animals and cases of recurrence justify the discovery of new treatments for sporotrichosis. This work addresses the antifungal activity of silver salts of Keggin-type heteropolyacid salts (Ag-HPA salts) such as Ag3[PW12O40], Ag6[SiW10V2O40], Ag4[SiW12O40] and Ag3[PMo12O40] and interactions with the antifungal drugs itraconazole (ITC), terbinafine (TBF) and amphotericin B (AMB) on the yeast and mycelia forms of Sporothrix spp. Sporothrix spp. yeast cells were susceptible to Ag-HPA salts at minimum inhibitory concentration (MIC) values ranging from 8 to 128 ㎍/ml. Interactions between Ag3[PW12O40] and Ag3[PMo12O40] with itraconazole and amphotericin B resulted in higher antifungal activity with a reduction in growth and melanization. Treated cells showed changes in cell membrane integrity, vacuolization, cytoplasm disorder, and membrane detachment. Promising antifungal activity for treating sporotrichosis was observed for the Ag-HPA salts Ag3[PMo12O40] and Ag3[PW12O40], which have a low cost, high yield and activity at low concentrations. However, further evaluation of in vivo tests is still required.

Comparative Study of the Biological Activity of Propolis Extracts with Various Countries of Origin as Cosmetic Materials (원산지별 프로폴리스 추출물의 화장품 소재로서의 생리활성 비교연구)

  • Jung, Eunsun;Weon, Jin Bae;Ji, Hyanggi;You, Jiyoung;Oh, Se-young;Kim, Hayeon;Xin, Yingji;Kim, Eun Bin;Heo, Kang-Hyuck;Park, Deokhoon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.46 no.2
    • /
    • pp.159-166
    • /
    • 2020
  • Propolis is a sticky resinous substance that is formed by the combination of honeybee secretions and resin of plants, which serves to protect from bacteria and viruses. This study aims to evaluate the efficacy of propolis extract from Korea (KPE), China (CPE), and Brazil (BPE) through antioxidant, antibacterial, whitening, and anti-inflammatory tests, and to examine their potential as cosmetic materials. KPE, CPE, and BPE showed significant antioxidant activities on flavonoid/polyphenol content and free radical scavenging activity. The antibacterial effect of propolis on skin flora was determined by measuring the minimal inhibitory concentration (MIC). KPE showed better antibacterial efficacy than CPE and BPE in C. acnes (KPE, CPE, and BPE: (62.5, 250, and 500) ㎍/mL, respectively). Furthermore, KPE inhibited the melanin synthesis in human epidermal melanocytes and production of nitric oxide and PGE2 induced by lipopolysaccharide (LPS) in mouse macrophages, which showed better than did CPE or BPE. Taken together, the propolis extracts can be applied to antioxidant, antibacterial, and anti-inflammatory ingredient for cosmetics, while KPE showed superior potential in antibacterial, anti-inflammatory, and whitening efficacies.

Inhibition of Quorum Sensing Regulated Virulence Factors and Biofilm Formation by Eucalyptus globulus against Multidrug-Resistant Pseudomonas aeruginosa

  • Sagar, Pankaj Kumar;Sharma, Poonam;Singh, Rambir
    • Journal of Pharmacopuncture
    • /
    • v.25 no.1
    • /
    • pp.37-45
    • /
    • 2022
  • Objectives: The quorum-sensing-inhibitory and anti-biofilm activities of the methanol extract of E. globulus leaves were determined against clinically isolated multidrug-resistant Pseudomonas aeruginosa. Methods: The preliminary anti-quorum-sensing (AQS) activity of eucalyptus was investigated against a biosensor strain Chromobacterium violaceum ATCC 12472 (CV12472) by using the agar well diffusion method. The effect of sub-minimum inhibitory concentrations (sub-MICs) of the methanol extract of eucalyptus on different quorum-sensing-regulated virulence factors, such as swarming motility, pyocyanin pigment, exopolysaccharide (EPS), and biofilm formation, against clinical isolates (CIs 2, 3, and 4) and reference PA01 of Pseudomonas aeruginosa were determined using the swarm diameter (mm)-measurement method, chloroform extraction method, phenol (5%)-sulphuric acid (concentrated) method, and the microtiter plate assay respectively, and the inhibition (%) in formation were calculated. Results: The preliminary AQS activity (violacein pigment inhibition) of eucalyptus was confirmed against Chromobacterium violaceum ATCC 12472 (CV12472). The eucalyptus extract also showed concentration-dependent inhibition (%) of swarming motility, pyocyanin pigment, EPS, and biofilm formation in different CIs and PA01 of P. aeruginosa. Conclusion: Our results revealed the effectiveness of the E. globulus extract for the regulation of quorum-sensing-dependent virulence factors and biofilm formation at a reduced dose (sub-MICs) and suggest that E. globulus may be a therapeutic agent for curing and controlling bacterial infection and thereby reducing the possibility of resistance development in pathogenic strains.

Comparative Study of Antimicrobial and Cytotoxic Effects of 1, 2-Octanediol and 1, 2-Octanediol Galactoside (1, 2-Octanediol과 1, 2-Octanediol Galactoside의 항균력 및 세포독성 비교연구)

  • Kim, Jun-Sub;Jin, Hong-Jong;Jung, Kyung-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.629-637
    • /
    • 2021
  • To develop a safer cosmetic preservative, we carried out a comparative study on characteristics of OD and OD-gal, where OD-gal was synthesized from OD using E. coli β-gal. OD-gal synthesis was confirmed by mass spectrometry analysis as sodium adduct ion (m/z=331.1731) and protonated ion (m/z=309.1926) of OD-gal. To compare the antimicrobial activities of OD and newly synthesized OD-gal, MIC values were investigated using E. coli, S. aureus, C. albicans, and A. niger. As a result, it was observed that there was no remarkable difference between MIC values of OD and OD-gal. In addition, to compare the cytotoxicity of OD-gal and OD, HaCaT cells were treated with OD or OD-gal, and then cell viability was quantified using EZ-Cytox assay. In the case of 1.5% OD, the cell viability was 64% at 24 h and 42% at 48 h compared to the control, and cell viability of 1.5% OD-gal-treated cells showed no significant change at 24 h and was 85% at 48 h. Consequently, the cytotoxicity of OD-gal-treated cells was reduced by more than 40% when compared with that of OD-treated cells. Thus, the newly synthesized OD-gal in this study is safer than the existing OD used as a cosmetic additive. In the future, OD-gal will be applicable as a substitute for OD as a less toxic preservative for the cosmetic industry.

Antimicrobial and Antioxidative Activities of the Extracts from Walnut (Juglans regia L.) Green Husk (호두과피 추출물의 항산화 및 항균활성)

  • Han, Kook-Il;Kim, Mi ran;Jo, Bu Kyung;Kim, Min Ji;Kang, Min Joo;Park, Ki-hyoun;Koo, Ye eun;Kim, Byeongseong;Jung, Eui-Gil;Han, Man-Deuk
    • Journal of Life Science
    • /
    • v.25 no.4
    • /
    • pp.433-440
    • /
    • 2015
  • Several studies suggest that regular consumption of walnuts may have beneficial effects against oxidative stress-mediated disease such as cancer. The present study reports the total phenolic and flavonoid contents, together with the antioxidant and antibacterial activities of several solvent extracts (methanol, n-hexane, ethyl acetate, n-butanol, and water) obtained from walnut (Juglans regia L.) green husk. MIC (minimal inhibitory concentration) values of the walnut extracts for 8 human pathogenic bacteria strain were determined using agar dilution method. Antioxidant activity of extracts were assessed using DPPH (1,1-diphenyl-2-picrylhydrazyl) and ABTS (2,2’-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid)) assays, EC50 of DPPH and ABTS scavenging activities, and determination of total phenolic and flavonoid content and its correlation with DPPH and ABTS scavenging capacities. Among the six extracts, ethyl acetate extract (EtOAc Ex) showed the highest antimicrobial activity at 3.2 mg/ml of MICs against Staphylococcus aureus SG511. Total flavonoids and polyphenol contents of EtOAc Ex were 42.48 mg of quercetin equivalents (QE)/g and 223.25 mg of gallic acid equivalents (GAE)/g respectively. The highest antioxidative potential was shown by the sample extracted with EtOAc Ex (EC50=13.43 μg/ml for DPPH and EC50=41.83 μg/ml for ABTS radical scavenging activity assay). These results showed that J. regia green husk extracts can be used as an easily accessible source of natural antibacterial agents and natural antioxidants.

Inhibitory effect of SeO2 on cell growth of methicillin-resistant Staphylococcus aureus (SeO2의 메티실린-내성 황색포도상구균에 대한 생육 억제 효과)

  • Han, Yeong-Hwan
    • Korean Journal of Microbiology
    • /
    • v.51 no.4
    • /
    • pp.444-447
    • /
    • 2015
  • This study was carried out to determine the antibacterial activity of $SeO_2$ against pathogenic bacteria, methicillin-resistant Staphylococcus aureus (MRSA). Using the disc diffusion method, $SeO_2$ showed higher antibacterial activity against Gram-positive bacteria than Gram-negative bacteria used in this study. Coccus-form bacteria showed much susceptible to $SeO_2$, compared to bacillus-form bacteria. Compared to antibiotics-susceptible S. aureus, antibiotics used in this study showed lower antibacterial activity against MRSA. As $200-500{\mu}g/disc$ of $SeO_2$ was applied, diameters of clear zone for S. aureus and MRSA were 20-32.7 mm and 13.5-17.9 mm, respectively. For MRSA, minimal inhibitory concentration of $SeO_2$ was $40{\mu}g/ml$. When $SeO_2$ was added in culture broth, cell growth of MRSA was inhibited. These results will be applied to determine antibacterial mechanism of MRSA and other pathogenic microorganisms.

Antimicrobial Activity and Total Polyphenol Content of Extracts from Artemisia capillaris Thunb· and Artemisia iwayomogi Kitam· Used as Injin (인진(茵蔯)으로 쓰이는 사철쑥과 더위지기 추출물의 항미생물활성 및 total polyphenol함량)

  • Seo, Kyoung-Sun;Yun, Kyeong-Won
    • Korean Journal of Plant Resources
    • /
    • v.24 no.1
    • /
    • pp.10-16
    • /
    • 2011
  • We investigated the antimicrobial activity of ether and ethylacetate fractions from Artemisia capillaris and Artemisia iwayomogi used as Injin. The antimicrobial activity of the ethylacetate fractions from Artemisia capillaris and Artemisia iwayomogi for tested microbes were stronger than those of ether fractions of the two Artemisia plants. The antimicrobial activity of fractions of Artemisia iwayomogi was higher than that of fractions of Artemisia capillaris for the tested microbes. The extracts of young shoots and leaves showed stronger antimicrobial activity than those of young leaves. The range of minimum inhibitory concentrations(MICs) of ethylacetate fractions from the part of Artemisia capillaris and Artemisia iwayomogi were 0.25~2.0 mg/ml. The MICs of ether fractions were showed higher concentration than those of ethylacetate fractions. The fractions of Artemisia iwayomogi showed lower MICs than fractions of Artemisia capillaris. The highest total polyphenol content was found in young shoots and leaves of A. capillaris. The young shoots and leaves of the two kinds of Artemisia plants showed higher content of total polyphenol.

Biological Activity of Water Extract from Atractylodes macrocephala

  • Chun Ju Yeon;Lee Hyun Ok;Baek Seung Hwa
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.2
    • /
    • pp.596-598
    • /
    • 2004
  • The effects of water extract from Atractylodes macrocephala Koidz on biological activity were investigated. The crude water extract of A. macrocephala inhibited the growth of the dermatophytic fungus Trichophyton mentagrophytes ATCC 28185, (3 mm inhibition zone at 300 ㎍/disc). However, it did not show growth inhibition activity against Sreptococcus mutans JC-2 (MIC >1,000 ㎍/mL). This extract was cytotoxic to P388 murine leukaemia cells ATCC CCL 46 P388D1, (IC/sub 50/ 62.24 ㎍/mL at 150 ㎍/disc). These results suggest that water extract of A. macrocephala possesses antitumoral, and antimicrobial activities.

Synthesis of 1,3-Dioxolan-2-yliden Derivatives and Their Antifungal Activities (1,3-Dioxolan-2-yliden 유도체들의 합성과 항진균 활성)

  • 김영섭;김우정;김범태;박노균;박창식
    • YAKHAK HOEJI
    • /
    • v.43 no.5
    • /
    • pp.566-571
    • /
    • 1999
  • (1H-1,2,4-Triazolyl) methy-4-(sub). phenyl-5-methyl-1,3-dioxolan-2-yliden (3) derivatives were synthesized and tested for their antifungal activities. The designed compounds with a 1,2,4-triazolylmethyl group at the 4-position of 1,3-dioxolan-2-yliden moiety were synthesized by reaction of difluorinated olefins(2) with (2R, 3R)-2-(2,4-dihalophenyl)-1-(1H-1,2,4-triazol-l-yl) butane-2,3-diol (1). These compounds were tested for in vitro antifungal activities against 16 fungi species. The MIC values were determined by the micro broth dilution method. In general, 1,3-dioxolan-2-yliden derivatives showed antifungal activities in vitro. Among them, (4R, 5R)-4-(2,4-difluorophenyl)-5-methyl-2-[1-(3,4-methylenedioxypheny)meth-ylidene)-1,3-dioxolon-4-yl(1H-1,2,4-triazollyl)methane showed superior antifungal activities to fluconazol and ketoconazol.

  • PDF

Identification of Uncharacterized Anti-microbial Peptides Derived from the European Honeybee (꿀벌 Apis mellifera에서 유래 한 특성화 되지 않은 항균성 펩티드의 동정)

  • Park, Hee Geun;Kim, Dong Won;Lee, Man-Young;Choi, Yong Soo
    • Journal of Life Science
    • /
    • v.30 no.1
    • /
    • pp.64-69
    • /
    • 2020
  • The European honeybee (Apis mellifera L.) has multiple anti-microbial peptides, but many were unknown and demands for their characterization have increased. This study therefore focused on identifying novel anti-microbial peptides (AMPs) from A. mellifera L. To obtain high-throughput transcriptome data of the honeybee, we implemented next-generation sequencing (NGS), isolating novel AMPs from total RNA, and generated 15,314 peptide sequences, including 44 known, using Illumina HiSeq 2500 technology. The uncharacterized peptides were identified based on specific features of possible AMPs predicted in the sequencing analysis. AMP5, one such uncharacterized peptide, was expressed in the epidermis, body fat, and venom gland of the honeybee. We chemically synthesized this peptide and tested its anti-bacterial activity against Gram-negative Escherichia coli (KACC 10005) and Gram-positive Bacillus thuringiensis (KACC 10168) by anti-microbial assay. AMP5 exhibited anti-bacterial activity against E. coli (MIC50=22.04±0.66 μM) but not against B. thuringiensis. When worker bees were injected with E. coli, AMP5 was up-regulated in the body fat. This study therefore identified AMP5 in adult European honeybees and confirmed its anti-bacterial activity against Gram-negative E. coli.