• Title/Summary/Keyword: sub assembly

Search Result 280, Processing Time 0.028 seconds

Site-directed Mutagenesis of Five Conserved Residues of Subunit I of the Cytochrome cbb3 Oxidase in Rhodobacter capsulatus

  • Ozturk, Mehmet;Gurel, Ekrem;Watmough, Nicholas J.;Mandaci, Sevnur
    • BMB Reports
    • /
    • v.40 no.5
    • /
    • pp.697-707
    • /
    • 2007
  • Cytochrome $cbb_3$ oxidase is a member of the heme-copper oxidase superfamily that catalyses the reduction of molecular oxygen to the water and conserves the liberated energy in the form of a proton gradient. Comparison of the amino acid sequences of subunit I from different classes of heme-copper oxidases showed that transmembrane helix VIII and the loop between transmembrane helices IX and X contain five highly conserved polar residues; Ser333, Ser340, Thr350, Asn390 and Thr394. To determine the relationship between these conserved amino acids and the activity and assembly of the $cbb_3$ oxidase in Rhodobacter capsulatus, each of these five conserved amino acids was substituted for alanine by site-directed mutagenesis. The effects of these mutations on catalytic activity were determined using a NADI plate assay and by measurements of the rate of oxygen consumption. The consequence of these mutations for the structural integrity of the $cbb_3$ oxidase was determined by SDS-PAGE analysis of chromatophore membranes followed by TMBZ staining. The results indicate that the Asn390Ala mutation led to a complete loss of enzyme activity and that the Ser333Ala mutation decreased the activity significantly. The remaining mutants cause a partial loss of catalytic activity. All of the mutant enzymes, except Asn390Ala, were apparently correctly assembled and stable in the membrane of the R. capsulatus.

Genome-wide association study identifies 22 new loci for body dimension and body weight traits in a White Duroc×Erhualian F2 intercross population

  • Ji, Jiuxiu;Zhou, Lisheng;Guo, Yuanmei;Huang, Lusheng;Ma, Junwu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.8
    • /
    • pp.1066-1073
    • /
    • 2017
  • Objective: Growth-related traits are important economic traits in the swine industry. However, the genetic mechanism of growth-related traits is little known. The aim of this study was to screen the candidate genes and molecular markers associated with body dimension and body weight traits in pigs. Methods: A genome-wide association study (GWAS) on body dimension and body weight traits was performed in a White $Duroc{\times}Erhualian$ $F_2$ intercross by the illumina PorcineSNP60K Beadchip. A mixed linear model was used to assess the association between single nucleotide polymorphisms (SNPs) and the phenotypes. Results: In total, 611 and 79 SNPs were identified significantly associated with body dimension traits and body weight respectively. All SNPs but 62 were located into 23 genomic regions (quantitative trait loci, QTLs) on 14 autosomal and X chromosomes in Sus scrofa Build 10.2 assembly. Out of the 23 QTLs with the suggestive significance level ($5{\times}10^{-4}$), three QTLs exceeded the genome-wide significance threshold ($1.15{\times}10^{-6}$). Except the one on Sus scrofa chromosome (SSC) 7 which was reported previously all the QTLs are novel. In addition, we identified 5 promising candidate genes, including cell division cycle 7 for abdominal circumference, pleiomorphic adenoma gene 1 and neuropeptides B/W receptor 1 for both body weight and cannon bone circumference on SSC4, phosphoenolpyruvate carboxykinase 1, and bone morphogenetic protein 7 for hip circumference on SSC17. Conclusion: The results have not only demonstrated a number of potential genes/loci associated with the growth-related traits in pigs, but also laid a foundation for studying the genes' role and further identifying causative variants underlying these loci.

Macrocyclic Isomers with S2O-Donor Set as Silver(I) Ionophores

  • Park, Sung-Bae;Yoon, Il;Seo, Joo-beom;Kim, Hyun-Jee;Kim, Jae-Sang;Lee, Shim-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.5
    • /
    • pp.713-717
    • /
    • 2006
  • $S_2O$-donor macrocyclic isomers incorporating a xylyl group in o- ($L^1$), m- ($L^2$) and p-positions ($L^3$) extract no metal ions except silver(I) from aqueous to chloroform phase. And the magnitudes of %Ex for silver(I) are in the order of $L^1$ > $L^2$ > $L^3$. Taking this result into account, $L^1$-$L^3$ were utilized as membrane active components to prepare potentiometric silver(I)-selective electrodes. The proposed macrocycles-based electrodes E1 ($L^1$), E2 ($L^2$) and E3 ($L^3$) exhibited comparable results which show considerable selectivity toward silver(I) over alkali, alkali earth and other transition metal ions. Comparative NMR study on $L^1$-$L^3$ and their complexes with silver(I) in solution was also accomplished. In addition, a unique sandwich-type complex $[Ag(L^1)_2]CIO_4$ was prepared from the assembly reaction of $L^1$ with $AgClO_4$ and structurally characterized by an X-ray diffraction analysis.

Nuclear Localization Signals in Prototype Foamy Viral Integrase for Successive Infection and Replication in Dividing Cells

  • Hossain, Md. Alamgir;Ali, Md. Khadem;Shin, Cha-Gyun
    • Molecules and Cells
    • /
    • v.37 no.2
    • /
    • pp.140-148
    • /
    • 2014
  • We identified four basic amino acid residues as nuclear localization signals (NLS) in the C-terminal domain of the prototype foamy viral (PFV) integrase (IN) protein that were essential for viral replication. We constructed seven point mutants in the C-terminal domain by changing the lysine and arginine at residues 305, 308, 313, 315, 318, 324, and 329 to threonine or proline, respectively, to identify residues conferring NLS activity. Our results showed that mutation of these residues had no effect on expression assembly, release of viral particles, or in vitro recombinant IN enzymatic activity. However, mutations at residues 305 (R ${\rightarrow}$ T), 313(R ${\rightarrow}$ T), 315(R ${\rightarrow}$ P), and 329(R ${\rightarrow}$ T) lead to the production of defective viral particles with loss of infectivity, whereas non-defective mutations at residues 308(R ${\rightarrow}$ T), 318(K ${\rightarrow}$ T), and 324(K ${\rightarrow}$ T) did not show any adverse effects on subsequent production or release of viral particles. Sub-cellular fractionation and immunostaining for viral protein PFV-IN and PFV-Gag localization revealed predominant cytoplasmic localization of PFV-IN in defective mutants, whereas cytoplasmic and nuclear localization of PFV-IN was observed in wild type and non-defective mutants. However sub-cellular localization of PFV-Gag resulted in predominant nuclear localization and less presence in the cytoplasm of the wild type and non-defective mutants. But defective mutants showed only nuclear localization of Gag. Therefore, we postulate that four basic arginine residues at 305, 313, 315 and 329 confer the karyoplilic properties of PFV-IN and are essential for successful viral integration and replication.

MoS2/Montmorillonite Nanocomposite: Preparation, Tribological Properties, and Inner Synergistic Lubrication

  • Cheng, Lehua;Hu, Enzhu;Chao, Xianquan;Zhu, Renfa;Hu, Kunhong;Hu, Xianguo
    • Nano
    • /
    • v.13 no.12
    • /
    • pp.1850144.1-1850144.13
    • /
    • 2018
  • A nano-$MoS_2$/montmorillonite K-10 (K10) composite was prepared and characterized. The composite contains two types of 2H-$MoS_2$ nanoparticles. One is the hollow spherical $MoS_2$ with a size range of 75 nm, and the other is the spherical nano cluster of $MoS_2$ with a size range of 30 nm. The two kinds of nano-$MoS_2$ were formed via assembly of numerous $MoS_2$ nano-platelets with a size of ~10 nm. A tribological comparison was then made among nano-$MoS_2$/K10, K10, nano-$MoS_2$ and a mechanical mixture of K10 and nano-$MoS_2$. K10 reduced the wear but slightly increased the friction. Nano-$MoS_2$ remarkably reduced both friction and wear. The mechanical mixture demonstrated better wear resistance than nano-$MoS_2$, indicating a synergistic anti-wear effect of nano-$MoS_2$ and K10. The synergistic effect was reinforced using nano-$MoS_2$/K10 instead of the mechanical mixture. A part of the $MoS_2$ in the contact region always lubricated the friction pair, and the rest formed a tribofilm. K10 segregated the friction pair to alleviate the ablation wear but magnified the abrasive wear. S-$MoS_2$ protects K10 and they together function as both a lubricant and an isolating agent to reduce the ablation and abrasive wear.

Pattern Formation of Highly Ordered Sub-20 nm Pt Cross-Bar on Ni Thin Film (Ni 박막 위 20 nm급 고정렬 Pt 크로스-바 구조물의 형성 방법)

  • Park, Tae Wan;Jung, Hyunsung;Cho, Young-Rae;Lee, Jung Woo;Park, Woon Ik
    • Korean Journal of Metals and Materials
    • /
    • v.56 no.12
    • /
    • pp.910-914
    • /
    • 2018
  • Since catalyst technology is one of the promising technologies to improve the working performance of next generation energy and electronic devices, many efforts have been made to develop various catalysts with high efficiency at a low cost. However, there are remaining challenges to be resolved in order to use the suggested catalytic materials, such as platinum (Pt), gold (Au), and palladium (Pd), due to their poor cost-effectiveness for device applications. In this study, to overcome these challenges, we suggest a useful method to increase the surface area of a noble metal catalyst material, resulting in a reduction of the total amount of catalyst usage. By employing block copolymer (BCP) self-assembly and nano-transfer printing (n-TP) processes, we successfully fabricated sub-20 nm Pt line and cross-bar patterns. Furthermore, we obtained a highly ordered Pt cross-bar pattern on a Ni thin film and a Pt-embedded Ni thin film, which can be used as hetero hybrid alloy catalyst structure. For a detailed analysis of the hybrid catalytic material, we used scanning electron microscope (SEM), transmission electron microscope (TEM) and energy-dispersive X-ray spectroscopy (EDS), which revealed a well-defined nanoporous Pt nanostructure on the Ni thin film. Based on these results, we expect that the successful hybridization of various catalytic nanostructures can be extended to other material systems and devices in the near future.

Fabrication of TiO2/polyelectrolyte thin film for a methyl mercaptan gas sensor (메칠멜캅탄 가스센서용 TiO2/전해질폴리머 박막 제조)

  • Kim, Jin-Ho;Hwang, Jong-Hee;Lee, Mi-Jai;Kim, Sei-Ki;Lim, Tae-Young
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.5
    • /
    • pp.221-226
    • /
    • 2010
  • Quartz crystal microbalance (QCM) gas sensor to detect methyl mercaptan ($CH_3SH$) gas was fabricated by depositing $TiO_2$ nanoparticles and polyelectrolyte on the electrode of QCM. The $TiO_2$/poly(sodium 4-styrenesulfonate) (PSS) thin film fabricated by a layer-by-layer self-assembly (LBL-SA) method showed a high surface area and increased the sensitivity of gas sensor. When the QCM sensors coated with triethanolamine (TEA) or ($TiO_2$/PSS) were exposed to methyl mercaptan gas (1.0 ppm), the frequency shifts of QCM with TEA casting film and $TiO_2$/PSS thin film were ca. 9 Hz and ca. 24 Hz, respectively. As the bilayer number of ($TiO_2$/PSS) increased, the frequency shift of QCM sensor with ($TiO_2$/PSS) thin film was gradually increased. In addition, the frequency shift of QCM sensor was gradually increased as the concentration of methyl mercaptan gas increased from 0.5 ppm to 2.0 ppm. In this study, the surface morphology and sensor property of QCM sensor coated with ($TiO_2$/PSS) thin film were measured.

Fabrication of Photocatalyst Glass Beads Coated with TiO2 Thin Film by a Layer-by-Layer Process (LBL법에 의해 TiO2막이 코팅된 광촉매 글라스 비드 제조)

  • Lee, Ji-Sun;Chae, Yoo-Jin;Lee, Mi-Jai;Kim, Sei-Ki;Hwang, Jong-Hee;Lim, Tae-Young;Hyun, Soong-Keun;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.22 no.7
    • /
    • pp.379-383
    • /
    • 2012
  • $TiO_2$ thin films consisting of positively charged poly(diallyldimethylammonium chloride)(PDDA) and negatively charged titanium(IV) bis(ammonium lactato) dihydroxide(TALH) were successfully fabricated on glass beads by a layer-by-layer(LBL) self-assembly method. The glass beads used here showed a positive charge in an acid range and negative charge in an alkaline range. The glass beads coated with the coating sequence of(PDDA/TALH)n showed a change in the surface morphology as a function of the number of bilayers. When the number of bilayers(n) of the(PDDA/TALH) thin film was 20, Ti element was observed on the surface of the coated glass beads. The thin films coated onto the glass beads had a main peak of the (101) crystal face and were highly crystallized with XRD diffraction peaks of anatase-type $TiO_2$ according to an XRD analysis. In addition, the $TiO_2$ thin films showed photocatalytic properties such that they could decompose a methyl orange solution under illumination with UV light. As the number of bilayers of the(PDDA/TALH) thin film increased, the photocatalytic property of the $TiO_2$-coated glass beads increased with the increase in the thin film thickness. The surface morphologies and optical properties of glass beads coated with $TiO_2$ thin films with different coating numbers were measured by field emission scanning electron microscopy(FE-SEM), X-ray diffraction(XRD) and by UV-Vis spectrophotometry(UV-vis).

Compensation of Installation Errors in a Laser Vision System and Dimensional Inspection of Automobile Chassis

  • Barkovski Igor Dunin;Samuel G.L.;Yang Seung-Han
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.437-446
    • /
    • 2006
  • Laser vision inspection systems are becoming popular for automated inspection of manufactured components. The performance of such systems can be enhanced by improving accuracy of the hardware and robustness of the software used in the system. This paper presents a new approach for enhancing the capability of a laser vision system by applying hardware compensation and using efficient analysis software. A 3D geometrical model is developed to study and compensate for possible distortions in installation of gantry robot on which the vision system is mounted. Appropriate compensation is applied to the inspection data obtained from the laser vision system based on the parameters in 3D model. The present laser vision system is used for dimensional inspection of car chassis sub frame and lower arm assembly module. An algorithm based on simplex search techniques is used for analyzing the compensated inspection data. The details of 3D model, parameters used for compensation and the measurement data obtained from the system are presented in this paper. The details of search algorithm used for analyzing the measurement data and the results obtained are also presented in the paper. It is observed from the results that, by applying compensation and using appropriate algorithms for analyzing, the error in evaluation of the inspection data can be significantly minimized, thus reducing the risk of rejecting good parts.

Optimization of Emulsion Polymerization for Submicron-Sized Polymer Colloids towards Tunable Synthetic Opals

  • Kim, Seul-Gi;Seo, Young-Gon;Cho, Young-Jin;Shin, Jin-Sub;Gil, Seung-Chul;Lee, Won-Mok
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.7
    • /
    • pp.1891-1896
    • /
    • 2010
  • Submicron-sized polymeric colloidal particles can self assemble into 3-dimensional (3D) opal structure which is a useful template for photonic crystal. Narrowly dispersed polymer microspheres can be synthesized by emulsion polymerization in water using water-soluble radical initiator. In this report, we demonstrate a facile and reproducible emulsion polymerization method to prepare various polymeric microspheres within 200 - 400 nm size ranges which can be utilized as colloidal photonic crystal template. By controlling the amount of monomer and surfactant, monodisperse polymer colloids of polystyrene (PS) and acrylates with various sizes were successfully prepared without complicated synthetic procedures. Such polymer colloids self-assembled into 3D opal structure exhibiting bright colors by reflection of visible light. The colloidal particles and the resulting opal structures were rigorously characterized, and the wavelength of the structural color from the colloidal crystal was confirmed to have quantitative relationship with the size of constituting colloidal particles as predicted by Bragg equation. The tunability of the structural color was achieved not only by varying the particle size but also by infiltration of the colloidal crystal with liquids having different refractive indices.