• Title/Summary/Keyword: styrenated phenol

Search Result 3, Processing Time 0.013 seconds

Synthesis of Styrenated Phenol Alkoxylate from Styrenated Phenol with Ethylene Carbonate over KOH/La2O3 Catalyst (KOH/La2O3 촉매상에서 Styrenated Phenol과 Ethylene Carbonate의 반응으로부터 Styrenated Phenol Alkoxylate의 합성)

  • Lee, Seungmin;Son, Seokhwan;Jung, Sunghun;Kwak, Wonbong;Shin, Eun Ju;Ahn, Hogeun;Chung, Minchul
    • Applied Chemistry for Engineering
    • /
    • v.29 no.1
    • /
    • pp.62-66
    • /
    • 2018
  • Styrenated phenol alkoxylates (SP-A) were prepared from styrenated phenol (SP) and ethylene oxide (EO) under a homogeneous base catalyst. However, to use EO that is difficult to handle, a high-pressure reaction device capable of controlling the reaction process should be used. Additionally, when a homogeneous base catalyst is used, a neutralization process is required to remove residual bases after the reaction, and it is also difficult to separate the catalyst and the product. Therefore, in this study, we report the results of SP-A prepared from the reaction of SP and EC using only heterogeneous base catalysts. The heterogeneous base catalyst was obtained by supporting KOH on $La_2O_3$ and calcintion. Using EC instead of EO, it was possible to produce SP-A under the atmospheric rather than high-pressure reaction condition. Average molecular weights of synthesized SP-A varied greatly depending on reaction conditions. The average molecular weight of SP-A prepared using the $KOH/La_2O_3$ catalyst could be controlled arbitrarily by controlling the reaction temperature and added catalyst and EC amounts.

Synthesis and Characterization of Water-borne Pressure Sensitive Adhesives Polymerized using Styrenated Phenol Type Surfactants (스티렌페놀계 계면활성제 기반 친환경 수계 점착제 합성 및 특성 분석)

  • Song, Young Kyu;Lee, Sang-Ho;Park, Young Il;Kim, Jin Chul
    • Journal of Adhesion and Interface
    • /
    • v.21 no.4
    • /
    • pp.156-161
    • /
    • 2020
  • Waterborne pressure sensitive adhesives (PSA) has been received much attentions from both academia and industries as an environmental friendly-technology because it can significantly reduce use of hazardous organic volatile solvents. However, in the process of the mass production of waterborne PSAs, hazardous phenol type amphiphilic compounds have essentially been used as surfactants for the emulsion polymerization. For the reason, tremendous research efforts have been made to develop environment-friendly organic surfactant which can replace the phenol type surfactants. In this study, we verify the potential of a new class of surfactants based on the styrenated phenol derivatives as an alternative to the phenol type surfactants.

Photoacid Catalyzed Reaction of Phenol with Styrene

  • Kim, Vicna;Shin, Eun Ju;Chung, Minchul;Ahn, Hogeun;Kwak, Wonbong
    • Rapid Communication in Photoscience
    • /
    • v.5 no.1
    • /
    • pp.13-15
    • /
    • 2016
  • The reaction of styrene with phenol using photoacid catalyst has been investigated. Upon irradiation with 450 nm light, protonated merocyanine photoacid converts into spiropyran form with releasing proton. The reaction of styrene with phenol has been conducted under irradiation with 450 nm light using merocyanine photoacid catalyst at room temperature in comparison with the results using some selected catalysts including $H_2SO_4$ or $FeCl_3$ at the reaction temperature of $120^{\circ}C$.