• 제목/요약/키워드: student direct loan

Search Result 3, Processing Time 0.07 seconds

Developing the high risk group predictive model for student direct loan default using data mining (데이터마이닝을 이용한 학자금 대출 부실 고위험군 예측모형 개발)

  • Choi, Jae-Seok;Han, Jun-Tae;Kim, Myeon-Jung;Jeong, Jina
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.6
    • /
    • pp.1417-1426
    • /
    • 2015
  • We develop the high risk group predictive model for loan default by utilizing the direct loan data from 2012 to 2014 of the Korea Student Aid Foundation. We perform the decision tree analysis using the data mining methodology and use SAS Enterprise Miner 13.2. As a result of this model, subject types were classified into 25 types. This study shows that the major influencing factors for the loan default are household income, national grant, age, overdue record, level of schooling, field of study, monthly repayment. The high risk group predictive model in this study will be the basis for segmented management service for preventing loan default.

Developing the credit risk scoring model for overdue student direct loan (학자금 대출 연체의 신용위험 평점 모형 개발)

  • Han, Jun-Tae;Jeong, Jina
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.5
    • /
    • pp.1293-1305
    • /
    • 2016
  • In this paper, we develop debt collection predictive models for the person in arrears by utilizing the direct loan data of the Korea Student Aid Foundation. We suggest credit risk scorecards for overdue student direct loan using the developed 3 models. Model 1 is designed for 1 month overdue, Model 2 is designed for 2 months overdue, and Model 3 is designed for overdue over 2 months. Model 1 shows that the major influencing factors for the delinquency are overdue account, due data for payment, balance, household income. Model 2 shows that the major influencing factors for delinquency loan are days in arrears, balance, due date for payment, arrears. Model 3 shows that the major influencing factors for delinquency are the number of overdue in recent 3 months, due data for payment, overdue account, arrears. The debt collection predictive models and credit risk scorecards in this study will be the basis for segmented management service and the call & collection strategies for preventing delinquency.

Analysis of Current Situation of University Student Loans Based on Bigdata (빅데이터 기반 대학생 학자금 대출 현황 분석)

  • Kim, Jeong-Joon;Jang, Sung-Jun;Lee, Yong-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.5
    • /
    • pp.229-238
    • /
    • 2019
  • Before the scholarship loan system was implemented at the Korea Scholarship Foundation, the government's role was strengthened by the direct lending of student funds to banks and other financial institutions. However, the low repayment performance of student loans has raised concerns over the future of student loans and the government's financial burden. Moreover, since student loans are repaid even after graduating from college to support low-income families, it is highly unlikely that the repayment rate of student loans will improve unless the employment rate and income level of the borrower improve. In this paper, the final visualization graph is presented of the repayment amount of the student loan through the collection, storage, processing and analysis phase in the Big Data-based system. This could be the basis for visually checking the amount of student loans to come up with various ways to reduce the burden on the current student loan system.