• Title/Summary/Keyword: structured pattern

Search Result 254, Processing Time 0.026 seconds

기업의 경쟁전략과 정보비중이 조직 구성원의 통신기술 이용에 미치는 영향

  • Park Sang Hyeok;Jo Nam Jae;Kang Tae Gyeong
    • Proceedings of the Korea Association of Information Systems Conference
    • /
    • 2004.05a
    • /
    • pp.202-213
    • /
    • 2004
  • An effective use of information and communications technology is thought of as critical for achieving corporate competitiveness. This study identifies patterns of corporate use of communications technology, and examines how the use of those technologies is associated with business strategies and the level of information intensity. A survey study on a sample of Korean corporations shows that the use of communications technology is closely related both to business strategy and information intensity, and that communications technologies can be divided into two types in terms of their usage pattern. The structured communication technology is found to be related to the tools and services that support structured tasks, and the The unstructured technology to the tools the use of which is less structured and more flexible. Cost-based strategy is found to be closely related to the use of structured communication technology, while differentiation strategy is closely related to the use of unstructured communication technology.

  • PDF

Three Dimensional Geometric Feature Detection Using Computer Vision System and Laser Structured Light (컴퓨터 시각과 레이저 구조광을 이용한 물체의 3차원 정보 추출)

  • Hwang, H.;Chang, Y.C.;Im, D.H.
    • Journal of Biosystems Engineering
    • /
    • v.23 no.4
    • /
    • pp.381-390
    • /
    • 1998
  • An algorithm to extract the 3-D geometric information of a static object was developed using a set of 2-D computer vision system and a laser structured lighting device. As a structured light pattern, multi-parallel lines were used in the study. The proposed algorithm was composed of three stages. The camera calibration, which determined a coordinate transformation between the image plane and the real 3-D world, was performed using known 6 pairs of points at the first stage. Then, utilizing the shifting phenomena of the projected laser beam on an object, the height of the object was computed at the second stage. Finally, using the height information of the 2-D image point, the corresponding 3-D information was computed using results of the camera calibration. For arbitrary geometric objects, the maximum error of the extracted 3-D feature using the proposed algorithm was less than 1~2mm. The results showed that the proposed algorithm was accurate for 3-D geometric feature detection of an object.

  • PDF

Depth Evaluation from Pattern Projection Optimized for Automated Electronics Assembling Robots

  • Park, Jong-Rul;Cho, Jun Dong
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.4
    • /
    • pp.195-204
    • /
    • 2014
  • This paper presents the depth evaluation for object detection by automated assembling robots. Pattern distortion analysis from a structured light system identifies an object with the greatest depth from its background. An automated assembling robot should prior select and pick an object with the greatest depth to reduce the physical harm during the picking action of the robot arm. Object detection is then combined with a depth evaluation to provide contour, showing the edges of an object with the greatest depth. The contour provides shape information to an automated assembling robot, which equips the laser based proxy sensor, for picking up and placing an object in the intended place. The depth evaluation process using structured light for an automated electronics assembling robot is accelerated for an image frame to be used for computation using the simplest experimental set, which consists of a single camera and projector. The experiments for the depth evaluation process required 31 ms to 32 ms, which were optimized for the robot vision system that equips a 30-frames-per-second camera.

Hard calibration of a structured light for the Euclidian reconstruction (3차원 복원을 위한 구조적 조명 보정방법)

  • 신동조;양성우;김재희
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.183-186
    • /
    • 2003
  • A vision sensor should be calibrated prior to infer a Euclidian shape reconstruction. A point to point calibration. also referred to as a hard calibration, estimates calibration parameters by means of a set of 3D to 2D point pairs. We proposed a new method for determining a set of 3D to 2D pairs for the structured light hard calibration. It is simply determined based on epipolar geometry between camera image plane and projector plane, and a projector calibrating grid pattern. The projector calibration is divided two stages; world 3D data acquisition Stage and corresponding 2D data acquisition stage. After 3D data points are derived using cross ratio, corresponding 2D point in the projector plane can be determined by the fundamental matrix and horizontal grid ID of a projector calibrating pattern. Euclidian reconstruction can be achieved by linear triangulation. and experimental results from simulation are presented.

  • PDF

Structured Pruning for Efficient Transformer Model compression (효율적인 Transformer 모델 경량화를 위한 구조화된 프루닝)

  • Eunji Yoo;Youngjoo Lee
    • Transactions on Semiconductor Engineering
    • /
    • v.1 no.1
    • /
    • pp.23-30
    • /
    • 2023
  • With the recent development of Generative AI technology by IT giants, the size of the transformer model is increasing exponentially over trillion won. In order to continuously enable these AI services, it is essential to reduce the weight of the model. In this paper, we find a hardware-friendly structured pruning pattern and propose a lightweight method of the transformer model. Since compression proceeds by utilizing the characteristics of the model algorithm, the size of the model can be reduced and performance can be maintained as much as possible. Experiments show that the structured pruning proposed when pruning GPT-2 and BERT language models shows almost similar performance to fine-grained pruning even in highly sparse regions. This approach reduces model parameters by 80% and allows hardware acceleration in structured form with 0.003% accuracy loss compared to fine-tuned pruning.

Demosaicking of Hexagonally-Structured Bayer Color Filter Array (육각형 구조의 베이어 컬러 필터 배열에 대한 디모자익킹)

  • Lee, Kyungme;Yoo, Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1434-1440
    • /
    • 2014
  • This paper describes a demosaicking method for hexagonally-structured color filter array. Demosaicking is essential to acquire color images using color filter array (CFA) in single sensor imaging. Thus, CFA patterns have been discussed in order to improve image quality in single sensor imaging after the Bayer pattern are introduced. Advancements in imaging sensor technology recently introduce a hexagonal CFA pattern. The hexagonal CFA can be considered to be a 45-degree rotational version of the Bayer pattern, thus demosaicking can be implemented by an existing method with backward and forward 45-degree rotations. However, this approach requires heavy computing power and memory in image sensing devices because of the image rotations. To overcome this problem, we proposes a demosaicking method for a hexagonal Bayer CFA without rotations. In addition, we introduce a weighting parameter in our demosaicking method to improve image quality and to unifying exiting method with our method. Experimental results indicate that the proposed method is superior to conventional methods in terms of PSNR. In addition, some optimized values for the weighting parameter are provided experimentally.

High Resolution Depth-map Estimation in Real-time using Efficient Multi-threading (효율적인 멀티 쓰레딩을 이용한 고해상도 깊이지도의 실시간 획득)

  • Cho, Chil-Suk;Jun, Ji-In;Choo, Hyon-Gon;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.17 no.6
    • /
    • pp.945-953
    • /
    • 2012
  • A depth map can be obtained by projecting/capturing patterns of stripes using a projector-camera system and analyzing the geometric relationship between the projected patterns and the captured patterns. This is usually called structured light technique. In this paper, we propose a new multi-threading scheme for accelerating a conventional structured light technique. On CPUs and GPUs, multi-threading can be implemented by using OpenMP and CUDA, respectively. However, the problem is that their performance changes according to the computational conditions of partial processes of a structured light technique. In other words, OpenMP (using multiple CPUs) outperformed CUDA (using multiple GPUs) in partial processes such as pattern decoding and depth estimation. In contrast, CUDA outperformed OpenMP in partial processes such as rectification and pattern segmentation. Therefore, we carefully analyze the computational conditions where each outperforms the other and do use the better one in the related conditions. As a result, the proposed method can estimate a depth map in a speed of over 25 fps on $1280{\times}800$ images.

Development of 3D Scanner Based on Laser Structured-light Image (레이저 구조광 영상기반 3차원 스캐너 개발)

  • Ko, Young-Jun;Yi, Soo-Yeong;Lee, Jun-O
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.3
    • /
    • pp.186-191
    • /
    • 2016
  • This paper addresses the development of 3D data acquisition system (3D scanner) based laser structured-light image. The 3D scanner consists of a stripe laser generator, a conventional camera, and a rotation table. The stripe laser onto an object has distortion according to 3D shape of an object. By analyzing the distortion of the laser stripe in a camera image, the scanner obtains a group of 3D point data of the object. A simple semiconductor stripe laser diode is adopted instead of an expensive LCD projector for complex structured-light pattern. The camera has an optical filter to remove illumination noise and improve the performance of the distance measurement. Experimental results show the 3D data acquisition performance of the scanner with less than 0.2mm measurement error in 2 minutes. It is possible to reconstruct a 3D shape of an object and to reproduce the object by a commercially available 3D printer.

The Effect of Career Barrier, Satisfaction and Career Decision Making Pattern on Career Search Behavior in Male Nursing Students (남자 간호대학생의 진로장벽, 전공만족도 및 진로의사결정유형이 진로탐색행동에 미치는 영향)

  • Choi, Eun Young;Choi, Mi Jung;Park, Sang Bin
    • The Journal of Korean Academic Society of Nursing Education
    • /
    • v.22 no.3
    • /
    • pp.334-344
    • /
    • 2016
  • Purpose: The study was conducted to investigate the effect of career barrier, satisfaction, and career decision making pattern on career search behaviors in male nursing students. Methods: Data were collected through structured questionnaires that included general characteristics, career barrier, satisfaction, career decision making pattern and career search behaviors and were analyzed by descriptive statistics, ANOVA, t-test, Pearson correlation coefficient and multiple regression using SPSS/PC+ program. Results: The results of the research suggest the two aspects of career search behaviors as being self-exploration and environmental exploration. The rational pattern, among the types of satisfaction and career decision making pattern, was found to have a meaningful effect on self-expression. On the other hand, dependent pattern, among the satisfaction and career decision making pattern, was found to have an effect on career search patterns. Conclusion: It is considered that, based on the results of this study, diversified approaches that consider individual career decision making patterns such as rational pattern and dependent pattern as well as the methods to enhance the satisfaction of male nursing college students for career guidance are needed.

BGA Height Measurement Using Pattern Beam (패턴 빔을 이용한 BGA 단차 측정)

  • Shin, Sang-Hoon;Yu, Young-Hun
    • Korean Journal of Optics and Photonics
    • /
    • v.20 no.6
    • /
    • pp.361-365
    • /
    • 2009
  • We describe a simple method to obtain an optical sectioning in a conventional wide-field microscope by projecting a single spatial frequency grid pattern onto the object. Using a patterned beam, we have measured the height of BGA with a rough surface that provide the coherence noise. The configuration of the height measurement system using pattern beam is simple. The image acquired by this system is not depend on the coherence noises. This system is also applicable to the sample reference plan that has no pattern on ground. The reappearance and accuracy are outstanding and applicable to many industrial optical metrology.