• Title/Summary/Keyword: structure-dependent coefficient

Search Result 100, Processing Time 0.029 seconds

Nonlinear analysis of viscoelastic micro-composite beam with geometrical imperfection using FEM: MSGT electro-magneto-elastic bending, buckling and vibration solutions

  • Alimirzaei, S.;Mohammadimehr, M.;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.71 no.5
    • /
    • pp.485-502
    • /
    • 2019
  • In this research, the nonlinear static, buckling and vibration analysis of viscoelastic micro-composite beam reinforced by various distributions of boron nitrid nanotube (BNNT) with initial geometrical imperfection by modified strain gradient theory (MSGT) using finite element method (FEM) are presented. The various distributions of BNNT are considered as UD, FG-V and FG-X and also, the extended rule of mixture is used to estimate the properties of micro-composite beam. The components of stress are dependent to mechanical, electrical and thermal terms and calculated using piezoelasticity theory. Then, the kinematic equations of micro-composite beam using the displacement fields are obtained. The governing equations of motion are derived using energy method and Hamilton's principle based on MSGT. Then, using FEM, these equations are solved. Finally the effects of different parameters such as initial geometrical imperfection, various distributions of nanotube, damping coefficient, piezoelectric constant, slenderness ratio, Winkler spring constant, Pasternak shear constant, various boundary conditions and three material length scale parameters on the behavior of nonlinear static, buckling and vibration of micro-composite beam are investigated. The results indicate that with an increase in the geometrical imperfection parameter, the stiffness of micro-composite beam increases and thus the non-dimensional nonlinear frequency of the micro structure reduces gradually.

Decadal Changes in the Relationship between Arctic Oscillation and Surface Air Temperature over Korea (북극진동과 한반도 지표기온 관계의 장기변동성)

  • Jun, Ye-Jun;Song, Kanghyun;Son, Seok-Woo
    • Atmosphere
    • /
    • v.31 no.1
    • /
    • pp.61-71
    • /
    • 2021
  • The relationship between the Arctic Oscillation (AO) and surface air temperature (SAT) over Korea is re-examined using the long-term observation and reanalysis datasets for the period of December 1958 to February 2020. Over the entire period, Korean SAT is positively correlated with the AO index with a statistically significant correlation coefficient, greater than 0.4, only in the boreal winter. It is found that this correlation is not static but changes on the decadal time scale. While the 15-year moving correlations are as high as 0.6 in 1980s and 1990s, they are smaller than 0.3 in the other decades. It is revealed that this decadal variation is partly due to the AO structure change over the North Pacific. In the period of 1980s-1990s, the AO-related sea level pressure fluctuation is strong and well defined over the western North Pacific and the related temperature advection effectively changes the winter SAT over Korea. In the other periods, the AO-related circulation anomaly is either weak or mostly confined within the central North Pacific. This result suggests that Korean SAT-AO index relationship, which becomes insignificant in recent decades is highly dependent on mean flow change in the North Pacific.

A Study on the Beginning Point of Secondary Compression in Consolidation Theory (압밀이론에서 2차 압축 적용 시점에 관한 연구)

  • Kwon, Byenghae;Eam, Sunghoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.65 no.6
    • /
    • pp.51-63
    • /
    • 2023
  • To improve the problem that the settlement curve of the consolidation theory of Terzaghi does not match well with the actual settlement curve, we included a secondary compression settlement and analyzed it by varying the beginning point and then obtained the following results. The current methods of calculating the compression index from the  log𝜎 curve and the coefficient of consolidation from the time-dependent settlement curve for each consolidation pressure proved that the final settlement amount will be consistent after a long time, but the actual settlement amount will always be smaller than the predicted settlement amount during the settlement progress stage. The consolidation factors estimated by the curve fitting with the condition that the secondary compression begins in the second half of the primary compression showed similar values to the consolidation factors estimated by the curve fitting for the primary compression only, and the settlement curves were in better agreement throughout the compression. It showed different values, showing low validity. It can be inferred that secondary compression acts from the point when a significant portion of the excess pore water pressure is dissipated, and the loading stress begins to have more influence on the skeletal structure of the soil. Analysis results show that secondary compression begins at the range of 91 % to 98 % on the average degree of primary consolidation.

Factors Affecting the Financial Structure of Hospitals in Korea (병원의 재무구조에 영향을 미치는 요인)

  • 최만규;문옥륜;황인경
    • Health Policy and Management
    • /
    • v.12 no.2
    • /
    • pp.43-75
    • /
    • 2002
  • This study focuses on the factors that make the financial structure of hospitals in Korea different, and on recommended courses of action that could be very helpful to hospitals in maintaining a sound financial structure. Data used in this study were collected from 132 hospitals with complete general data of present conditions as well as financial statements. They were chosen from the 174 hospitals that passed the standardization audit undertaken by the Korean Hospital Association from 1996 to 2000 for the purpose of accrediting training hospitals. The dependent variable in this study is financial structure. It consists of liabilities as against total assets (total liabilities to total assets, short-term liabilities to total assets, long-term liabilities to total assets, short-term borrowings to total assets, long-term borrowings to total assets). The independent variables are ownership type, hospital type, location, whether or not a representative is a director of the hospital, the possibility of changing a hospital director, bed size, period of establishment, asset structure, profitability, growth, tax shields, business risk, competition. The factors that appear to have the strongest impact on the liabilities to total assets of all the hospitals sampled are ownership type, hospital type, profitability, tax shields, and business risk. It was found that not-for-profit private hospitals and for-profit private hospitals have more liabilities than public hospitals, and tertiary medical institutions have less liabilities than the secondary general hospitals. Moreover, hospitals earning more at the expense of high business risk have a distinct tendency to lower liabilities. Concerning the current ratio, it was found that factors such as ownership type, hospital type, period of establishment, asset structure, and business risk are the more significant variables. The current ratio of public hospitals is higher than that of both not-for-profit private hospitals and for-profit private hospitals, and the current ratio of tertiary medical institutions is higher than that of general hospitals. As business risk is higher in hospitals compared to other businesses, the current ratio becomes higher; this is because it is assumed that for fear of bankruptcy, hospitals lessen liabilities to total assets. On the other hand, as hospitals become older, the fixed assets to total assets become lower. It is remarkable that in hospitals, the factors affecting liabilities to total assets have an opposite regression coefficient sign against factors affecting current ratio. It brings out the same results borne out by the old financial theories and researches, in which a lot of the liabilities of hospitals are considered as the cause of worsening liquidity. Therefore, it is very important for hospitals to maintain a sound financial structure in order to survive using the rational acquisition and maintenance of capital.

The Prediction Model of Carbonation Process by CO2 Diffusion Using the Air Permeability Coefficient for Concrete (콘크리트의 투기계수를 이용한 CO2확산 탄산화진행 예측모델)

  • Kang, Suk-Pyo;Kim, Young-Sun;Song, Ha-Won;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.209-217
    • /
    • 2010
  • Recently, some mathematical models for the prediction on progress of carbonation of concrete were reported. These models take account for $CO_2$ diffusion and chemical reaction between $Ca(OH)_2$ and $CO_2$. Based on the assumption that $CO_2$ diffuses in the carbonation zone and reacts with $Ca(OH)_2$ at the outer face of carbonation zone and non-carbonation zone. In this study, a mathematical model to predict the progress of carbonation of concrete has been established based on the reducing concentration of $Ca(OH)_2$ in the carbonation progress zone, where $Ca(OH)_2$ reacts with $CO_2$ and $Ca(OH)_2$ and $CaCO_3$ coexist. Also, the prediction model of carbonation progress rate of concrete using the air permeability coefficient regarding to $CO_2$ diffusion is developed. As a result of this study, an expression, the model equation is obtained for the prediction of carbonation based on the time and interaction velocity between $CO_2$ and Ca(OH)$_2$ dependent air permeability coefficient. The prediction by the model satisfied the experimental data of the accelerated carbonation for painted concrete. Consequently, the model can predict the rate of carbonation and the potential service life of concrete structure exposed to atmosphere.

Social Network Analysis for the Effective Adoption of Recommender Systems (추천시스템의 효과적 도입을 위한 소셜네트워크 분석)

  • Park, Jong-Hak;Cho, Yoon-Ho
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.4
    • /
    • pp.305-316
    • /
    • 2011
  • Recommender system is the system which, by using automated information filtering technology, recommends products or services to the customers who are likely to be interested in. Those systems are widely used in many different Web retailers such as Amazon.com, Netfix.com, and CDNow.com. Various recommender systems have been developed. Among them, Collaborative Filtering (CF) has been known as the most successful and commonly used approach. CF identifies customers whose tastes are similar to those of a given customer, and recommends items those customers have liked in the past. Numerous CF algorithms have been developed to increase the performance of recommender systems. However, the relative performances of CF algorithms are known to be domain and data dependent. It is very time-consuming and expensive to implement and launce a CF recommender system, and also the system unsuited for the given domain provides customers with poor quality recommendations that make them easily annoyed. Therefore, predicting in advance whether the performance of CF recommender system is acceptable or not is practically important and needed. In this study, we propose a decision making guideline which helps decide whether CF is adoptable for a given application with certain transaction data characteristics. Several previous studies reported that sparsity, gray sheep, cold-start, coverage, and serendipity could affect the performance of CF, but the theoretical and empirical justification of such factors is lacking. Recently there are many studies paying attention to Social Network Analysis (SNA) as a method to analyze social relationships among people. SNA is a method to measure and visualize the linkage structure and status focusing on interaction among objects within communication group. CF analyzes the similarity among previous ratings or purchases of each customer, finds the relationships among the customers who have similarities, and then uses the relationships for recommendations. Thus CF can be modeled as a social network in which customers are nodes and purchase relationships between customers are links. Under the assumption that SNA could facilitate an exploration of the topological properties of the network structure that are implicit in transaction data for CF recommendations, we focus on density, clustering coefficient, and centralization which are ones of the most commonly used measures to capture topological properties of the social network structure. While network density, expressed as a proportion of the maximum possible number of links, captures the density of the whole network, the clustering coefficient captures the degree to which the overall network contains localized pockets of dense connectivity. Centralization reflects the extent to which connections are concentrated in a small number of nodes rather than distributed equally among all nodes. We explore how these SNA measures affect the performance of CF performance and how they interact to each other. Our experiments used sales transaction data from H department store, one of the well?known department stores in Korea. Total 396 data set were sampled to construct various types of social networks. The dependant variable measuring process consists of three steps; analysis of customer similarities, construction of a social network, and analysis of social network patterns. We used UCINET 6.0 for SNA. The experiments conducted the 3-way ANOVA which employs three SNA measures as dependant variables, and the recommendation accuracy measured by F1-measure as an independent variable. The experiments report that 1) each of three SNA measures affects the recommendation accuracy, 2) the density's effect to the performance overrides those of clustering coefficient and centralization (i.e., CF adoption is not a good decision if the density is low), and 3) however though the density is low, the performance of CF is comparatively good when the clustering coefficient is low. We expect that these experiment results help firms decide whether CF recommender system is adoptable for their business domain with certain transaction data characteristics.

Evaluation of thermal stability of quasi-isotropic composite/polymeric cylindrical structures under extreme climatic conditions

  • Gadalla, Mohamed;El Kadi, Hany
    • Structural Engineering and Mechanics
    • /
    • v.32 no.3
    • /
    • pp.429-445
    • /
    • 2009
  • Thermal stability of quasi-isotropic composite and polymeric structures is considered one of the most important criteria in predicting life span of building structures. The outdoor applications of these structures have raised some legitimate concerns about their durability including moisture resistance and thermal stability. Exposure of such quasi-isotropic composite/polymeric structures to various and severe climatic conditions such as heat flux and frigid climate would change the material behavior and thermal viability and may lead to the degradation of material properties and building durability. This paper presents an analytical model for the generalized problem. This model accommodates the non-linearity and the non-homogeneity of the internal heat generated within the structure and the changes, modification to the material constants, and the structural size. The paper also investigates the effect of the incorporation of the temperature and/or material constant sensitive internal heat generation with four encountered climatic conditions on thermal stability of infinite cylindrical quasi-isotropic composite/polymeric structures. This can eventually result in the failure of such structures. Detailed critical analyses for four case studies which consider the population of the internal heat generation, cylindrical size, material constants, and four different climatic conditions are carried out. For each case of the proposed boundary conditions, the critical thermal stability parameter is determined. The results of this paper indicate that the thermal stability parameter is critically dependent on the cylinder size, material constants/selection, the convective heat transfer coefficient, subjected heat flux and other constants accrued from the structure environment.

Numerical heat transfer analysis methodology for multiple materials with different heat transfer coefficient in unstructured grid for development of heat transfer analysis program for 3 dimensional structure of building (건물의 3차원 구조체에 대한 전열해석 프로그램 개발 중 서로 다른 열전도율을 갖는 복합재질 3차원 구조의 비정렬 격자에 대한 전산해석 방법)

  • Lee, Juhee;Jang, Jinwoo;Lee, Hyeonkyun;Lee, Youngjun;Lee, Kyusung
    • KIEAE Journal
    • /
    • v.16 no.1
    • /
    • pp.81-87
    • /
    • 2016
  • Purpose: Heat transfers phenomena are described by the second order partial differential equation and its boundary conditions. In a three-dimensional structure of a building, the heat transfer phenomena generally include more than one material, and thus, become complicate. The analytic solutions are useful to understand heat transfer phenomena, but they can hardly be applied in engineering or design problems. Engineers and designers have generally been forced to use numerical methods providing reliable results. Finite volume methods with the unstructured grid system is only the suitable means of the analysis for the complex and arbitrary domains. Method: To obtain an numerical solution, a discretization method, which approximates the differential equations, and the interpolation methods for temperature and heat flux between two or more materials are required. The discretization methods are applied to small domains in space and time, and these numerical solutions form the descretized equations provide approximated solutions in both space and time. The accuracy of numerical solutions is dependent on the quality of discretizations and size of cells used. The higher accuracy, the higher numerical resources are required. The balance between the accuracy and difficulty of the numerical methods is critical for the success of the numerical analysis. A simple and easy interpolation methods among multiple materials are developed. The linear equations are solved with the BiCGSTAB being a effective matrix solver. Result: This study provides an overview of discretization methods, boundary interface, and matrix solver for the 3-dimensional numerical heat transfer including two materials.

Seismic Behavior of the Friction Pendulum System in Bridge Seismic Isolation (교량에 설치된 마찰 단진자 시스템의 지진하중에 의한 거동연구)

  • 오순택;김영석;김연택
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.13-22
    • /
    • 1998
  • This paper summarizes a study on the application of the friction pendulum system in bridge seismic isolation. Shaking table tests have been carried out on a model structure isolated with F.P.S and the obtained structural responses are compared to those of non-isolated. It can be concluded the F.P.S increases the earthquake resistance capacity of the isolated structure. It is also found that the stiffness of bearing, being controlled by the radius of curvature of the spherical sliding interface, is unaffected by the amplitude of the input excitation. Furthermore, the coefficient of sliding friction is velocity dependent so that in weak excitation the sliding velocity is low and, accordingly, the mobilized friction force is less than the one mobilized in strong excitation. Also, the frictional properties of the bearings remain markedly stable after extensive testing, and the permanent displacements are small and not cumulative in successive earthquakes.

  • PDF

The Study of Donor-Acceptor Chromophores and Diketopyrrolopyrrole(DPP) Analogues (Donor-Acceptor 발색단과 디케토피롤로피롤(DPP) 유도체에 관한 연구)

  • Kim, HunSoo;Kim, SeungHoi;Park, SooYoul
    • Tribology and Lubricants
    • /
    • v.32 no.5
    • /
    • pp.141-146
    • /
    • 2016
  • The diketopyrrolopyrrole (DPP) pigment is a bicyclic 8-π-electron system containing two lactam units. Typical DPP derivative pigments have melting points of over 350°C and very low solubility in most solvents, and show absorption in the visible region with a molar extinction coefficient of 33,000 dm2mol−1 and strong photoluminescence with maxima in the range 500–600 nm. X-ray structure analyses of DPP show that the whole molecule is almost in one plane. The phenyl rings are twisted out of the heterocyclic plane and the intermolecular hydrogen bonding between neighboring lactam NH and carbonyl units influences the structure of the DPP pigment in the solid state. In this study, mono-N-alkylation and mono-N-arylation were undertaken for Pigment Red 264 or Pigment Orange 73 with alkyl halide and aryl halide, respectively, in the presence of sodium tert-butoxide as a base catalyst to improve the solubility of DPP pigments and their application as CO2 indicators. The synthetic yield was in the range 11–88%. The indicator dyes are highly soluble in organic solvents and shows pH-dependent absorption (λmax 501 and 572 nm for the protonated and deprotonated forms, respectively) and emission (λmax 524 and 605 nm for the protonated and deprotonated forms, respectively) spectra. The mono-N-alkylated and mono-N-arylated DPP pigment was identified by 1H-NMR (1H-Nuclear Magnetic Resonance Spectrometer), FT-IR (Fourier Transform Infrared Spectroscopy), and MS (Mass Spectrometry). According to the results of color and hue properties obtained by a color matching analyzer, the synthesized DPP pigment material can be used as a CO2 indicator.