• 제목/요약/키워드: structure-activity relationship

검색결과 538건 처리시간 0.029초

Inhibition of Inducible Nitric Oxide Synthase and Cyclooxygenase-2 Activity by $1,2,3,4,6-Penta-Ο-galloyl-{\beta}-D-glucose$ in Murine Macrophage Cells

  • Lee, Sung-Jin;Lee, Ik-Soo;Mar, Woong-Chon
    • Archives of Pharmacal Research
    • /
    • 제26권10호
    • /
    • pp.832-839
    • /
    • 2003
  • Activated macrophages express inducible isoforms of nitric oxide synthase (iNOS) and cyclooxygenase (COX-2), and produce excessive amounts of nitric oxide (NO) and prostaglandin E$_2$ (PGE$_2$), which play key roles in the processes of inflammation and carcinogenesis. The root of Paeonia lactiflora Pall., and the root cortex of Paeonia suffruticosa Andr., are important Chinese crude drugs used in many traditional prescriptions. 1,2,3,4,6-penta-O-galloyl-$\beta$-D-glucose (PGG) is a major bioactive constituent of both crude drugs. PGG has been shown to possess potent anti-oxidant, anti-mutagenic, anti-proliferative and anti-invasive effects. In this study, we examined the inhibitory effects of 1,2,3,4,6-penta-O-galloyl-$\beta$-D-glucose (PGG) isolated from the root of Paeonia lactiflora Pall. on the COX-2 and iNOS activity in LPS-activated Raw 264.7 cells, COX-1 in HEL cells. To investigate the structure-activity relationships of gallate and gallic acid for the inhibition of iNOS and COX-2 activity, we also examined (-)-epigallocatechin gallate (EGCG), gallic acid, and gallacetophenone. The results of the present study indicated that PGG, EGCG, and gallacetophenone treatment except gallic acid significantly inhibited LPS-induced NO production in LPS-activated macrophages. All of the four compounds significantly inhibited COX-2 activity in LPS-activated macrophages. Among the four compounds examined, PGG revealed the most potent in both iNOS ($IC_{50}$ = 18 $\mu\textrm{g}/mL$) and COX-2 inhibitory activity (PGE$_2$: $IC_{50}$ = 8 $\mu\textrm{g}/mL$ and PGD$_2$: $IC_{50}$ = 12 $\mu\textrm{g}/mL$), respectively. Although further studies are needed to elucidate the molecular mechanisms and structure-activity relationship by which PGG exerts its inhibitory actions, our results suggest that PGG might be a candidate for developing anti-inflammatory and cancer chemopreventive agents.

Relationship Between Tyrosinase Inhibitory Action and Oxidation-Reduction Potential of Cosmetic Whitening Ingredients and Phenol Derivatives

  • Sakuma, Katsuya;Ogawa, Masayuki;Sugibayashi, Kenji;Yamada, Koh-ichi;Yamamoto, Katsumi
    • Archives of Pharmacal Research
    • /
    • 제22권4호
    • /
    • pp.335-339
    • /
    • 1999
  • The oxidation-reduction potentials of cosmetic raw materials, showing tyrosinase inhibitory action, and phenolic compounds structurally similar to L-tyrosine were determined by cylcic voltammetry. The voltammograms obtained could be classified ito 4 patterns (patterns 1-4). Patterns 1, characterized by oxidation and reduction peaks as a pair, was observed with catechol, hydroquinone or phenol, and pattern 2 exhibiting another oxidation peak in addition to oxidation and reduction peaks as a pair was found with arbutin, kojic acid, resorcinol, methyl p-hydroxybenzoate and L-tyrosine as the substrate of tyrosinase. Pattern 3 with an independent oxidation peak only was expressed by L-ascorbic acid, and pattern 4 with a reduction peak only at high potentials, by hinokitiol. The tyrosinase inhibitory activity of these compounds was also evaluated using the 50% inhibitory concentration ($IC_{50}$) and the inhibition constant (Ki) as parameters. Hinokitiol, classified as patterns 4, showed the highest inhibitory activity (lowest $IC_{50}$ and Ki). Hydroquinone showing the second highest activity belonged to pattern 1, which also included compounds exhibiting pattern 2 was relatively low with Ki values being in the order of 10-4 M. Although there was no consistent relationship between oxidation-reduction potentials and tyrosinase inhibitory action, the voltammetry data can be used as an additional index to establish the relationship between the structure and the tyrosine inhibitory activity.

  • PDF

Synthesis of Cyclic Antifreeze Glycopeptide and Glycopeptoids and Their Ice Recrystallization Inhibition Activity

  • Ahn, Mija;Murugan, Ravichandran N.;Shin, Song Yub;Kim, Eunjung;Lee, Jun Hyuck;Kim, Hak Jun;Bang, Jeong Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권11호
    • /
    • pp.3565-3570
    • /
    • 2012
  • Until now, few groups reported the antifreeze activity of cyclic glycopeptides; however, the tedious synthetic procedure is not amenable to study the intensive structure activity relationship. A series of N-linked cyclic glycopeptoids and glycopeptide have been prepared to evaluate antifreeze activity as a function of peptide backbone cyclization and methyl stereochemical effect on the rigid Thr position. This study has combined the cyclization protocol with solid phase peptide synthesis and obtained significant quantities of homogeneous cyclic glycopeptide and glycopeptoids. Analysis of antifreeze activity revealed that our cyclic peptide demonstrated RI activity while cyclic glycopeptoids showed no RI activity. These results suggest that the subtle changes in conformation and Thr orientation dramatically influence RI activity of N-linked glycopeptoids.

Effects of simulated acid rain on microbial activities and litter decomposition

  • Lim, Sung-Min;Cha, Sang-Seob;Shim, Jae-Kuk
    • Journal of Ecology and Environment
    • /
    • 제34권4호
    • /
    • pp.401-410
    • /
    • 2011
  • We assayed the effects of simulated acid rain on the mass loss, $CO_2$ evolution, dehydrogenase activity, and microbial biomass-C of decomposing Sorbus alnifolia leaf litter at the microcosm. The dilute sulfuric acid solution composed the simulated acid rain, and the microcosm decomposition experiment was performed at 23$^{\circ}C$ and 40% humidity. During the early decomposition stage, decomposition rate of S. alnifolia leaf litter, and microbial biomass, $CO_2$ evolution and dehydrogenase activity were inhibited at a lower pH; however, during the late decomposition stage, these characteristics were not affected by pH level. The fungal component of the microbial community was conspicuous at lower pH levels and at the late decomposition stage. Conversely, the bacterial community was most evident during the initial decomposition phase and was especially dominant at higher pH levels. These changes in microbial community structure resulting from changes in microcosm acidity suggest that pH is an important aspect in the maintenance of the decomposition process. Litter decomposition exhibited a positive, linear relationship with both microbial respiration and microbial biomass. Fungal biomass exhibited a significant, positive relationship with $CO_2$ evolution from the decaying litter. Acid rain had a significant effect on microbial biomass and microbial community structure according to acid tolerance of each microbial species. Fungal biomass and decomposition activities were not only more important at a low pH than at a high pH but also fungal activity, such as $CO_2$ evolution, was closely related with litter decomposition rate.

Designing Hypothesis of 2-Substituted-N-[4-(1-methyl-4,5-diphenyl-1H-imidazole-2-yl)phenyl] Acetamide Analogs as Anticancer Agents: QSAR Approach

  • Bedadurge, Ajay B.;Shaikh, Anwar R.
    • 대한화학회지
    • /
    • 제57권6호
    • /
    • pp.744-754
    • /
    • 2013
  • Quantitative structure-activity relationship (QSAR) analysis for recently synthesized imidazole-(benz)azole and imidazole - piperazine derivatives was studied for their anticancer activities against breast (MCF-7) cell lines. The statistically significant 2D-QSAR models ($r^2=0.8901$; $q^2=0.8130$; F test = 36.4635; $r^2$ se = 0.1696; $q^2$ se = 0.12212; pred_$r^2=0.4229$; pred_$r^2$ se = 0.4606 and $r^2=0.8763$; $q^2=0.7617$; F test = 31.8737; $r^2$ se = 0.1951; $q^2$ se = 0.2708; pred_$r^2=0.4386$; pred_$r^2$ se = 0.3950) were developed using molecular design suite (VLifeMDS 4.2). The study was performed with 18 compounds (data set) using random selection and manual selection methods used for the division of the data set into training and test set. Multiple linear regression (MLR) methodology with stepwise (SW) forward-backward variable selection method was used for building the QSAR models. The results of the 2D-QSAR models were further compared with 3D-QSAR models generated by kNN-MFA, (k-Nearest Neighbor Molecular Field Analysis) investigating the substitutional requirements for the favorable anticancer activity. The results derived may be useful in further designing novel imidazole-(benz)azole and imidazole-piperazine derivatives against breast (MCF-7) cell lines prior to synthesis.

4D-QSAR Study of p56Ick Protein Tyrosine Kinase Inhibitory Activity of Flavonoid Derivatives Using MCET Method

  • Yilmaz, Hayriye;Guzel, Yahya;Onal, Zulbiye;Altiparmak, Gokce;Kocakaya, Safak Ozhan
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권12호
    • /
    • pp.4352-4360
    • /
    • 2011
  • A four dimensional quantitative structure activity relationship analysis was applied to a series of 50 flavonoid inhibitors of $p56^{lck}$ protein tyrosine kinase by the molecular comparative electron topological method. It was found that the -log (IC50) values of the compounds were highly dependent on the topology, size and electrostatic character of the substituents at seven positions of the flavonoid scaffold in this study. Depending on the negative or positive charge of the groups correctly embedded in these substituents, three-dimensional bio-structure to increase or decrease -log (IC50) values in the training set of 39 compounds was predicted. The test set of 11 compounds was used to evaluate the predictivity of the model. To generate 4D-QSAR model, the defined function groups and pharmacophore used as topological descriptors in the calculation of activity were of sufficient statistical quality ($R^2$ = 0.72 and $Q^2$ = 0.69). Ligand docking approach by using Dock 6.0. These compounds include many flavonoid analogs, They were docked onto human families of p56lck PTKs retrieved from the Protein Data Bank, 1lkl.pdb.

Ames test 결과와 QSAR을 이용한 변이원성예측치와의 비교 (Comparison of QSAR mutagenicity prediction data with Ames test results)

  • 양숙영;맹승희;이종윤;이용욱;정호근;정해원;유일재
    • 한국환경성돌연변이발암원학회지
    • /
    • 제20권1호
    • /
    • pp.21-25
    • /
    • 2000
  • Recently there is increasing interest in the use of structure activity relationships for predicting the biological activity of chemicals. The reasons for the interest include the decrease cost and time per chemical as compared with animal or cell system for identifying toxicological effects of chemicals and the reduction in the use of animals for toxicological testing. This study is to test the validity of the mutagenicity data generated from QSAR (Quantitative Structure Activity Relationship) program. Thirty chemicals, which had been evaluated by Ames test during 1997-1999, were assessed with TOPKAT QSAR mutagenicity prediction module. Among 30chemicals experimented, 28 were negative and 2 were positive for Ames test. On the contrary, 23 chemicals showed the high confidence level indicating high prediction rate in mutagenicity evaluation, and 7 chemicals showed the lsow to moderate confidence level indicating low prediction in mutagenicity evaluation. Overall mutagenicity prediction rate was 77% (23/30). The prediction rates for non-mutagenic chemicals were 79% (22/28) and mutagenic chemicals were 50% (1/2). QSAR could be a useful tool in providing toxicological data for newly introduced chemicals or in furnishing data for MSDS or in determining the dose in toxicity testing for chemicals with no known toxicological data.

3D-QSAR Studies on Angiotensin-Converting Enzyme (ACE)Inhibitors: a Molecular Design in Hypertensive Agents

  • San Juan, Amor A.;Cho, Seung-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권6호
    • /
    • pp.952-958
    • /
    • 2005
  • Angiotensin-converting enzyme (ACE) is known to be primarily responsible for hypertension. Threedimensional quantitative structure-activity relationship (3D-QSAR) models have been constructed using the comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) for a series of 28 ACE inhibitors. The availability of ACE crystal structure (1UZF) provided the plausible biological orientation of inhibitors to ACE active site (C-domain). Alignment for CoMFA obtained by docking ligands to 1UZF protein using FlexX program showed better statistical model as compared to superposition of corresponding atoms. The statistical parameters indicate reasonable models for both CoMFA ($q^2$ = 0.530, $r^2$ = 0.998) and CoMSIA ($q^2$ = 0.518, $r^2$ = 0.990). The 3D-QSAR analyses provide valuable information for the design of ACE inhibitors with potent activity towards C-domain of ACE. The group substitutions involving the phenyl ring and carbon chain at the propionyl and sulfonyl moieties of captopril are essential for better activity against ACE.

소랄렌의 광화학 반응에 대한 이론적 연구 (I) 소랄렌의 구조-활성화에 대하여 (Theoretical Studies on the Photochemical Reaction of Psoralen(I) Structure-Activity Studies on the Psoralen)

  • 김자홍;정길영;손성호;양기수
    • 대한화학회지
    • /
    • 제37권4호
    • /
    • pp.396-400
    • /
    • 1993
  • 소랄렌의 광-피부증감의 구조-활성화 관계를 MM2, FMO 그리고 분자 connectivity법으로 연구하였다. DNA 염기에 끼워져 가교를 형성하는 소랄렌이 착물을 형성하는능력이 서로 다르다는 것을 DNA와 광-피부증감 소랄렌사이에 형성되는 분자착물로써 논의하였다. 광-피부증감을 소랄렌 유도체들의 활성화 자리의 입체 기하학 모델에 대해 분석하였고, 프론티어 오비탈 밀도는 광-피부증감 발암 활성도와 밀접한 관련이 있음을 알았다.

  • PDF

$L_{1210}$ 세포에 대한 인삼의 세포독성성분과 이들 화학구조와 활성과의 관계 (The Action of Cytotoxic Components of Korean Ginseng Against $L_{1210}$ Cells and Their Structure-Activity Relationship)

  • 안병준;김신일;이유희;강규상;김영숙
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 1988년도 학술대회지
    • /
    • pp.19-24
    • /
    • 1988
  • [ $L_{1210}$ ] 세포에 대하여 세포독성이 있는 두개의 새로운 polyyne을 인삼으로부터 분리하였는데 이들은 acetylpanaxydol과 panaxy-dolchlorhydrin이다. Panaxydol 유사체의 C-9 위치에 있는 epoxy group과 C-10 위치의 heptyl group 은 세포독성을 강화시켜준다. Panaxydol의 epoxy group 은 cis와 trans 이성체들간의 세포독성 차이는 없다. Panaxydol과 이들 이성체들에서 세포독성을 발휘하는 필수구조는 hept-l-en-4.6-diyn-3-ol이다.

  • PDF