• 제목/요약/키워드: structure crack

검색결과 1,243건 처리시간 0.025초

전산해석에 의한 온도응력 및 온도균열 검토 (A thermal stress and crack study by computer modelling)

  • 문수동;이상호;문한영
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.375-380
    • /
    • 2002
  • Tong-young LNG tank is a LNG storage tank of 140,000 kl, and it is composed of Bottom Slab(Annular, Center), Outer Wall, Ring Beam and Roof. Generally, when concrete temperature arise, the complex thermal stress of inner and outer part can cause serious thermal crack and damage at structure. So in this paper, for the control of this thermal crack, we did the concrete mix design with the base of fly-ash 30% substitute at binder, and through the computer modelling at Bottom Slab(Annular, Center), Outer Wall, Ring Beam and Roof, we studied the probability of thermal crack by thermal crack index.

  • PDF

고판도강재의 피로거동과 기구 (A study on the Faigue Behavior and Mechanism of High Hardened Steel)

  • 송삼홍
    • 대한기계학회논문집
    • /
    • 제3권3호
    • /
    • pp.116-123
    • /
    • 1979
  • On the basis of optical microscope and electro microscope observation for the fatigue fracture process of medium corbon martensitic structure produced by rapid heat treatment, mainly the abstracts of the studied results for the morphology of fatigue crack initiation process of high hardened steel are summarized as follows. Fatigue crack initiated from inclusion on the surface or subsurface. Above all the crack which initiated from inclusion exposed on the surface in as follows. (1) fatigue crack initiated from the boundary of the matrix and inclusion. (2) fatigue crack initiated at surrounding of small pit by drop out of inclusion.

Deep learning of sweep signal for damage detection on the surface of concrete

  • Gao Shanga;Jun Chen
    • Computers and Concrete
    • /
    • 제32권5호
    • /
    • pp.475-486
    • /
    • 2023
  • Nondestructive evaluation (NDE) is an important task of civil engineering structure monitoring and inspection, but minor damage such as small cracks in local structure is difficult to observe. If cracks continued expansion may cause partial or even overall damage to the structure. Therefore, monitoring and detecting the structure in the early stage of crack propagation is important. The crack detection technology based on machine vision has been widely studied, but there are still some problems such as bad recognition effect for small cracks. In this paper, we proposed a deep learning method based on sweep signals to evaluate concrete surface crack with a width less than 1 mm. Two convolutional neural networks (CNNs) are used to analyze the one-dimensional (1D) frequency sweep signal and the two-dimensional (2D) time-frequency image, respectively, and the probability value of average damage (ADPV) is proposed to evaluate the minor damage of structural. Finally, we use the standard deviation of energy ratio change (ERVSD) and infrared thermography (IRT) to compare with ADPV to verify the effectiveness of the method proposed in this paper. The experiment results show that the method proposed in this paper can effectively predict whether the concrete surface is damaged and the severity of damage.

응력집중부를 갖는 표면균열재의 균열길이 변화에 따른 피로거동 (The Fatigue Behavior by Variety of Crack Length of Surface Cracked Plate with Stress Concentration Part)

  • 남기우;김선진
    • 한국해양공학회지
    • /
    • 제9권1호
    • /
    • pp.83-91
    • /
    • 1995
  • Surface defects in structural members are apt to be origins of fatigue cracks growth, which may cause serious failure of whole structures. Most structure has a part where stress concentrates such as welded joints, corner parts, etc. And then, analysis on crack growth and penetration from these defects, therefore, is one of the most important subjects for the reliability of LBB design. The present paper has performed an experimental and analysis on the fatigue crack propagation by variety in crack length of surface cracked plate with stress concentration part. The crack growth behavior can be explained quantitatively by using Newman-Raju equation and the stress partitioning method proposed by ASME B&P Code Sec. XI. The stress concentration factor $K_t$ has affected on the crack growth. The crack growth after penetration depends upon the initial front side crack length.

  • PDF

Suppression of interfacial crack for foam core sandwich panel with crack arrester

  • Hirose, Y.;Hojo, M.;Fujiyoshi, A.;Matsubara, G.
    • Advanced Composite Materials
    • /
    • 제16권1호
    • /
    • pp.11-30
    • /
    • 2007
  • Since delamination often propagates at the interfacial layer between a surface skin and a foam core, a crack arrester is proposed for the suppression of the delamination. The arrester has a semi-cylindrical shape and is arranged in the foam core and is attached to the surface skin. Here, energy release rates and complex stress intensity factors are calculated using finite element analysis. Effects of the arrester size and its elastic moduli on the crack suppressing capability are investigated. Considerable reductions of the energy release rates at the crack tip are achieved as the crack tip approached the leading edge of the crack arrester. Thus, this new concept of a crack arrester may become a promising device to suppress crack initiation and propagation of the foam core sandwich panels.

랜덤하중에서의 균열전파속도 추정법에 관한 연구 (A Prediction of Crack Propagation Rate under Random Loading)

  • 표동근;안태환
    • 한국해양공학회지
    • /
    • 제8권2호
    • /
    • pp.115-123
    • /
    • 1994
  • Under variable amplitude loading conditions, retardation or accelerated condition of fatigue crack growth occurs with every cycle, Because fatigue crack growth behavior varied depend on load time history. The modeling of stress amplitude with storm loading acted to ships and offshore structures applied this paper. The crack closure behavior examine by recording the variation in load-strain relationship. By taking process mentioned above, fatigue crack growth rate, crack length, stress intensity factor, and crack closure stress intensity factor were obtained from the stress cycles of each type of storm ; A(6m), B(7m), C(8m), D(9m), E(11m) and F(15m) which was wave height. It showed that the good agreement with between the experiment results and simulation of storm loads. So this estimated method of crack propagtion rate gives a good criterion for the safe design of vessels and marine structure.

  • PDF

판재 내의 구멍 사이를 통과하는 피로크랙 전파 거동 (The Behavior of Fatigue Crack Propagation between Holes in Panel)

  • 조재웅;이억섭;김상철
    • 한국정밀공학회지
    • /
    • 제7권2호
    • /
    • pp.39-46
    • /
    • 1990
  • In this study, the mechanical behavious of a center crack which propagates between two holes in a panel are investigated. It is confirmed experimentally and analytically that a center crack stops and a small crack initiates from holes and propagates to fracture because of the compressive stress arising along the path of the fatigue crack propagation. Futhermore, it is noted that regardless of the configuration of the crack and the structure, Paris' law can be applied to the fatigue crack propagation.

  • PDF

조선 및 해양플랜트 구조물의 불안전 파괴방지 설계기술 (Design for avoid unstable fracture in shipbuilding and offshore plant structure)

  • 안규백;배홍열;노병두;안영호;최종교;우완측;박정웅
    • Journal of Welding and Joining
    • /
    • 제33권1호
    • /
    • pp.35-40
    • /
    • 2015
  • Recently, there have been the increase of ship size and the development of oil and gas in arctic region. These trends have led to the requirements such as high strength, good toughness at low temperature and good weldability for prevent of brittle fracture at service temperature. There has been the key issue of crack arrestability in large size structure such as container ship. In this report for the first time, crack arrest toughness of thick steel plate welds was evaluated by large scale ESSO test for estimate of brittle crack arrestability in thick steel plate. For large structures using thick steel plates, fracture toughness of welded joint is an important factor to obtain structural integrity. In general, there are two kinds of design concepts based on fracture toughness: crack initiation and crack arrest. So far, when steel structures such as buildings, bridges and ships were manufactured using thick steel plates (max. 80~100mm in thickness), they had to be designed in order to avoid crack initiation, especially in welded joint. However, crack arrest design has been considered as a second line of defense and applied to limited industries like pipelines and nuclear power plants. Although welded joint is the weakest part to brittle fracture, there are few results to investigate crack arrest toughness of welded joint. In this study, brittle crack arrest designs were developed for hatch side coaming of large container ships using arrest weld, hole, and insert technology.

Ultrasonic wireless sensor development for online fatigue crack detection and failure warning

  • Yang, Suyoung;Jung, Jinhwan;Liu, Peipei;Lim, Hyung Jin;Yi, Yung;Sohn, Hoon;Bae, In-hwan
    • Structural Engineering and Mechanics
    • /
    • 제69권4호
    • /
    • pp.407-416
    • /
    • 2019
  • This paper develops a wireless sensor for online fatigue crack detection and failure warning based on crack-induced nonlinear ultrasonic modulation. The wireless sensor consists of packaged piezoelectric (PZT) module, an excitation/sensing module, a data acquisition/processing module, a wireless communication module, and a power supply module. The packaged PZT and the excitation/sensing module generate ultrasonic waves on a structure and capture the response. Based on nonlinear ultrasonic modulation created by a crack, the data acquisition/processing module periodically performs fatigue crack diagnosis and provides failure warning if a component failure is imminent. The outcomes are transmitted to a base through the wireless communication module where two-levels duty cycling media access control (MAC) is implemented. The uniqueness of the paper lies in that 1) the proposed wireless sensor is developed specifically for online fatigue crack detection and failure warning, 2) failure warning as well as crack diagnosis are provided based on crack-induced nonlinear ultrasonic modulation, 3) event-driven operation of the sensor, considering rare extreme events such as earthquakes, is made possible with a power minimization strategy, and 4) the applicability of the wireless sensor to steel welded members is examined through field and laboratory tests. A fatigue crack on a steel welded specimen was successfully detected when the overall width of the crack was around $30{\mu}m$, and a failure warnings were provided when about 97.6% of the remaining useful fatigue lives were reached. Four wireless sensors were deployed on Yeongjong Grand Bridge in Souht Korea. The wireless sensor consumed 282.95 J for 3 weeks, and the processed results on the sensor were transmitted up to 20 m with over 90% success rate.

단일보드컴퓨터 구조해석을 통한 집적회로 균열현상의 구조적 개선 (Structural Improvement for Crack of Integrated Circuit in Single Board Computer by Structure Analysis)

  • 류정민;이용준;손권일
    • 한국항행학회논문지
    • /
    • 제23권5호
    • /
    • pp.460-465
    • /
    • 2019
  • 본 연구에서는 항법정보 산출용 컴퓨터에 탑재되는 단일보드컴퓨터를 대상으로 야전 운용간 발생한 전기적 고장현상에 대하여 구조해석 관점에서 해소방안을 도출하고자 하였다. 특성요인도 분석을 통해 단일보드컴퓨터의 구조적인 문제로 중앙처리장치 기판에 크랙이 발생한 것을 확인할 수 있었고, 크랙발생 부위에 가해진 물리적인 영향으로 인해 통신기능 수행이 불가해지면서 동시에 부팅이 불가한 현상이 나타난 것으로 확인되었다. 이에 대하여 크랙현상을 유발시키는 과도응력의 위치를 찾고자 구조해석을 수행하였다. 구조해석을 통해 응력집중현상이 발생하는 부위를 확인할 수 있었고, 이를 해소시키기 위해 과도응력의 원인이 되는 부품과 구조물을 변경하는 개선방안을 수립하였다. 개선방안에 대한 검증은 구조해석을 통해 개선 전과 후의 구조물에 작용하는 응력분포를 비교하여 응력의 감소정도를 보였다. 추가적으로, 열 해석을 통해 부품 및 구조물 변경으로 인한 방열기능 유지여부를 확인하였고, 개선방안을 적용한 실 장비의 방열판 온도를 측정함으로써 실제 장비의 방열 영향성을 확인하였다.