• Title/Summary/Keyword: structure control

Search Result 9,642, Processing Time 0.039 seconds

A Study on the Structure and Adaptive Methods for Robust Adaptive Control and its Simulation (견실한 적응제어를 위한 구조 및 적응 방법에 관한 인구와 시뮬레이션)

  • 윤태웅;최종호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.7
    • /
    • pp.484-491
    • /
    • 1987
  • A sufficent condition for the robust control of the adaptive control system is presented under the convergence of the parameters of the adaptive system. The plant in the adaptive control system is a stable system which includes the unmodelled dynamics and can be approximated by a minimum phase system. It is shown that modified structure which Kosut and Friedlander suggested satisfies the sufficient condition more easily than the original structure without modification. It is also shown by computer simulation that the modified structure and/ or the adaptation method using the normalized input and output data or filtered input and output data can improve the robustness of the adaptive control system.

  • PDF

Modal control algorithm on optimal control of intelligent structure shape

  • Yao, Guo Feng;Chen, Su Huan;Wang, Wei
    • Structural Engineering and Mechanics
    • /
    • v.15 no.4
    • /
    • pp.451-462
    • /
    • 2003
  • In this paper, a new block iterative algorithm is presented by using the special feature of the continuous Riccati equation in the optimal shape control. Because the real-time control require that the CPU time should be as short as possible, an appropriate modal control algorithm is sought. The computing cost is less than the one of the all state feedback control. A numerical example is given to illustrate the algorithm.

A Simulation Study of Position Control Performance of a Shape Memory Alloy-Actuated Flow Control Valve (형상기업합금을 이용한 유량제어밸브의 위치제어 적용 시뮬레이션)

  • Choi, Su-Hyun;Lee, Han-Suk;Kuk, Kum-Hoan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.79-87
    • /
    • 1999
  • In this study, a new type of flow control valve which is SMA actuated flow control valve is presented. The flow control valve is actuated by a small motion of shape memory alloy. The performance of this valve as a position control component is analyzed by computer simulation. A variable structure control technique is applied for the position control by the flow control valve. The position control performance of the valve is evaluated on the step responses of a PID control by a electrohydraulic servo valve. For the simulation study, first, the mathematical model of a hydraulic system, which is consisted of the flow control valve and a hydraulic cylinder, is formulated. This mathematical model and the designed variable structure control algorithm are then combined by the MATLAB software. The same sequence of work is carried out for the PID position control system with a electrohydraulic servo valve. The simulation results show the validity of the new type of flow control valve as a variable position control component.

  • PDF

Intelligent Hybrid Modular Architecture for Multi Agent System

  • Lee, Dong-Hun;Baek, Seung-Min;Kuc, Tae-Yong;Chung, Chae-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.896-902
    • /
    • 2004
  • The purpose of the study of multi-robot system is to realize multi-robot system easy for the control of robot system in case robot is adapted in the complicated environment of task structure. The purpose of the study of multi-robot system is to realize multi-robot system easy for the control of robot system in case robot is adapted in the complicated environment of task structure. To make real time control possible by making effective use of recognized information in this dynamic environment, suitable distribution of tasks should be made in consideration of function and role of each performing robots. In this paper, IHMA (Intelligent Hybrid Modular Architecture) of Intelligent combined control architecture which utilizes the merits of deliberative and reactive controllers will be suggested and its efficiency will be evaluated through the adaptation of control architecture to representative multi-robot system.

  • PDF

Control-structure interaction in piezoelectric deformable mirrors for adaptive optics

  • Wang, Kainan;Alaluf, David;Mokrani, Bilal;Preumont, Andre
    • Smart Structures and Systems
    • /
    • v.21 no.6
    • /
    • pp.777-791
    • /
    • 2018
  • This paper discusses the shape control of deformable mirrors for Adaptive Optics in the dynamic range. The phenomenon of control-structure interaction appears when the mirror becomes large, lowering the natural frequencies $f_i$, and the control bandwidth $f_c$ increases to improve the performance, so that the condition $f_c{\ll}f_i$ is no longer satisfied. In this case, the control system tends to amplify the response of the flexible modes and the system may become unstable. The main parameters controlling the phenomenon are the frequency ratio $f_c/f_i$ and the structural damping ${\zeta}$. Robustness tests are developed which allow to evaluate a lower bound of the stability margin. Various passive and active strategies for damping augmentation are proposed and tested in simulation.

A Research on the Adaptive Control by the Modification of Control Structure and Neural Network Compensation (제어구조 변경과 신경망 보정에 의한 적응제어에 관한 연구)

  • Kim, Yun-Sang;Lee, Jong-Soo;Choi, Kyung-Sam
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.812-814
    • /
    • 1999
  • In this paper, we propose a new control algorithm based on the neural network(NN) feedback compensation with a desired trajectory modification. The proposed algorithm decreases trajectory errors by a feed-forward desired torque combined with a neural network feedback torque component. And, to robustly control the tracking error, we modified the desired trajectory by variable structure concept smoothed by a fuzzy logic. For the numerical simulation, a 2-link robot manipulator model was assumed. To simulate the disturbance due to the modelling uncertainty. As a result of this simulation, the proposed method shows better trajectory tracking performance compared with the CTM and decreases the chattering in control inputs.

  • PDF

Robust Tracking Control of Smart Flexible Structures Featuring Piezofilm Actuators (압전필름 작동기로 구성된 스마트 유연 구조물의 강건추적제어)

  • Lee, Chul-Hee;Choei-Seung-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1498-1507
    • /
    • 1996
  • This paper presents a robust control of a smart flexible structure featured by a piezofilm actuator characterizing its light weght and quick response time. A mathematical governing equation for the proposed structure is derived by employing Hamilton's principle and a state space control model is subsequentrly obtained through modal analysis. Uncertain system parameters such as frequency variation are included in the control model. A sliding mode control theroy thich has inherent robustness to systme uncertainties is adopted to design a tracking controller for the peizofilm actuator. Using the output informaiton from the tip deflection sensor, a full-order observer is constructed ot estimate state variables for the system. Tracking performances for desired trajectories of sinusoidal amd step functions are evaluated by undertaking both simulation and experimental works.

Response and control of jacket structure with magneto-rheological damper at multiple locations/combinations

  • Syed, Khaja A.A.;Kumar, Deepak
    • Ocean Systems Engineering
    • /
    • v.8 no.2
    • /
    • pp.201-221
    • /
    • 2018
  • In this paper a comprehensive study for the structural control of Jacket platform with Magneto-Rheological (MR) damper is presented. The control is implemented as a closed loop feedback of the applied voltage in the MR Damper using fuzzy logic. Nine cases of combinations with MR damper are presented to complete the work. The selection of the MR damper (RD 1005-3) is based on the operating parameters (i.e., the range of frequency and displacement). Bingham model is used to obtain the control forces. The damping co-efficient of the model is obtained using empirical relationship between the voltage in the MR damper and input velocity from the structural members. The force acting on the structure is obtained from Morison equation using P-M spectrum. The results show that the reliable control was obtained when there was a continuous connection of multiple MR dampers with the lower levels of the structure. Independent MR dampers at different levels provided control within a range, while the MR dampers placed at alternate positions gave very high control.

Position Control of a Hydraulic System Subjected to Disturbances Using a Variable Structure Controller (가변구조제어기를 이용한 외란을 받는 유압시스템의 위치제어)

  • 박근석;김형의
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.10
    • /
    • pp.915-921
    • /
    • 2004
  • In this paper, a variable structure controller(VSC) is used to control the position of the hydraulic servo system subjected to unknown disturbances. The system consists of two cylinders, which connected in series. One cylinder executes position control, the other executes force control to generate disturbances. In order to control each cylinder, interaction must be considered between two cylinders because two cylinders are connected in series. Therefore, the controller is designed regarding interaction between two cylinders as disturbances. Performance of the proposed controller was verified through experiments and compared to PID controller. The experiments showed that the proposed controller had a good performance and robustness.

Simultaneous Optimization of Structural and Control Systems for Vibration Control of Flexible Beams (유연보의 진동제어를 위한 구조계와 제어계의 동시최적화)

  • 김창동;정의봉
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.12
    • /
    • pp.3127-3135
    • /
    • 1994
  • An approach to the simultaneous optimal design of structure and control system for large free-free flexible beam is presented. The flexible beam is modeled by the finite element method. And the reduced model of small degree of freedom is constructed by use of modal analysis. The tapered beam is considered so that the number of design variables is not dependent on the increasing number of finite elements. The width of several points of tapered beam and control gain are taken as design variables. The shape of beam and control gain are optimized simultaneously for the minimum weight of total structure including control system subject to the constraints of the magnitude of displacement of beam. It is shown that the simultaneous optimal design of structure and control systems is indeed useful.