• Title/Summary/Keyword: structure/fluid interaction

Search Result 785, Processing Time 0.029 seconds

Evaluation of sloshing Resistance Performance of LNG Carrier Insulation System by Fluid-Structure Interaction Analysis (유체-구조 연성 해석을 이용한 LNG 운반선 방열시스템의 내슬로싱 성능 평가)

  • Lee, Chi-Seung;Kim, Joo-Hyun;Kim, Wha-Soo;Noh, Byeong-Jae;Kim, Myung-Hyun;Lee, Jae-Myung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.557-560
    • /
    • 2011
  • In the present paper, the sloshing resistance performance of an LNG carrier insulation system is evaluated by fluid-structure interaction (FSI) analysis. For this analysis, the arbitrary Lagrangian Eulerian (ALE) method is adopted to accurately calculate the structural behavior induced by internal LNG motion of a KC-1 type LNG carrier cargo tank. In addition, the global-local analysis method is introduced to reduce computational time and cost. The global model is built from shell elements to reduce the sloshing analysis time. The proposed novel analysis techniques can potentially be used to evaluate the structural integrity of LNG carrier insulation systems.

  • PDF

Fluid-Structure Interaction Analysis of Two-Dimensional Wings (2차원 날개의 유체-구조 연성해석)

  • Ahn, Byoung-Kwon;Lee, Suk-Jeong;Kim, Ji-Hye;Kim, Ki-Sup
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.5
    • /
    • pp.343-348
    • /
    • 2013
  • When a natural frequency of the trailing edge of a wing is close to a vortex shedding frequency, an amplitude of the edge oscillation becomes maximal; it makes intensive noise called singing. Motion of the trailing edge may also feedback to the vortex shedding so that self-sustained oscillation appears, and a resonant frequency is locked in some interval of the speed of the incident flow. In this study, we first evaluate main features of oscillating characteristics of the wing. Second we simulate fluid-structure interaction of the wing with a flap using a commercial code, ANSYS-CFX, and investigate lift characteristics in a frequency domain.

Isogeometric analysis of the seismic response of a gravity dam: A comparison with FEM

  • Abdelhafid Lahdiri;Mohammed Kadri
    • Advances in Computational Design
    • /
    • v.9 no.2
    • /
    • pp.81-96
    • /
    • 2024
  • Modeling and analyzing the dynamic behavior of fluid-soil-structure interaction problems are crucial in structural engineering. The solution to such coupled engineering systems is often not achievable through analytical modeling alone, and a numerical solution is necessary. Generally, the Finite Element Method (FEM) is commonly used to address such problems. However, when dealing with coupled problems with complex geometry, the finite element method may not precisely represent the geometry, leading to errors that impact solution quality. Recently, Isogeometric Analysis (IGA) has emerged as a preferred method for modeling and analyzing complex systems. In this study, IGA based on Non-Uniform Rational B-Splines (NURBS) is employed to analyze the seismic behavior of concrete gravity dams, considering fluid-structure-foundation interaction. The performance of IGA is then compared with the classical finite element solution. The computational efficiency of IGA is demonstrated through case studies involving simulations of the reservoir-foundation-dam system under seismic loading.

Coupled Vibration Analysis of Cylindrical Fluid-storage Tanks with a Baffle (배플을 갖는 원통형 유체저장 탱크의 연성진동해석)

  • Kim, Young-Wann
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.1 s.94
    • /
    • pp.96-104
    • /
    • 2005
  • The coupled vibration characteristics for the fluid-structure interaction systems are investigated through the finite element method. The present paper is focused on vibration characteristics of the cylindrical fluid-storage tank with a baffle. The tank is partially filled with an inviscid and irrotational fluid having a free surface. A baffle is assumed here to have the shape of a thin annular plate and a conical shell, attached to the cylindrical tank and positioned below the fluid surface. The liquid domain is limited by a rigid flat bottom. As the effect of free surface waves is taken into account in the analysis, the bulging and sloshing modes are studied. To demonstrate the validity of present results, they are compared with the published ones. The effect of positions and inner-to-outer radius ratio of annular baffle and setting angles of conical baffle on coupled vibration characteristics is investigated.

Free Vibration Analysis of Two Rectangular Plates Coupled with Fluid (유체와 연성된 두 직사각 평판의 고유진동 해석)

  • 유계형;정경훈;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.752-755
    • /
    • 2001
  • In order to investigate the vibration characteristics of fluid-structure interaction problem, we modeled two rectangular identical plates coupled with bounded fluid. The fixed boundary condition along the plate edges and an ideal fluid are assumed. MSC/NASTRAN was used to perform finite element analysis and analytic solutions were compared with experimental solutions to verify finite element model. As a result, comparison of FEM and experiment show good agreement, and the transverse vibration modes, in-phase and out of-phase, were observed alternately in the fluid-coupled system. The effect of distance between two rectangular plates on the fluid-coupled natural frequency is investigated.

  • PDF

Modal Analysis of Two Rectangular Plates Coupled with Fluid (유체와 연성된 두 직사각형 평판의 모드 해석)

  • Yoo, Gye-Hyoung;Jeong, Kyeong-Hoon;Lee, Seong-Cheol
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.556-561
    • /
    • 2001
  • In order to investigate the vibration characteristics of fluid-structure interaction problem, we modeled two rectangular identical plates coupled with bounded fluid. The fixed boundary condition along the plate edges and an ideal fluid were assumed. An experimental modal analysis in order to extract the modal parameters of the system was performed. Finite element analysis was performed using ANSYS to verify modal parameters and analytic results were compared with experimental results. As a result, comparison of experiment and FEM showed good agreement and the transverse vibration modes, in-phase and out of-phase, were observed alternately in the fluid-coupled system. The effect of distance between two rectangular plates on the fluid-coupled natural frequency was investigated.

  • PDF

Finite Element Analysis of Two Rectangular Plates Coupled with Fluid (유체와 연성된 두 직사각형 평판의 유한요소 해석)

  • 유계형;정경훈;이성철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.668-671
    • /
    • 1997
  • In order to investigate the vibration characteristics of fluid-structure interaction problem, we modeled two identical rectangular plates coupled with bounded fluid. The fixed boundary condition along the plate edges and an ideal fluid were assumed. A commercial computer code, ANSYS was used to perform finite element analysis and FEM solutions were compared with the experimental results to modify the finite element model. As a result, comparison of FEM and experiment showed good agreement, and the transverse vibration modes, in-phase and out of-phase. were observed alternately in the tluid-coupled system. The effects of distance between two rectangular plates and width to length ratio on the fluid-coupled natural frequency were investigated. And it was found that the ormalized natural frequency of the fluid-coupled system monotonically increased with an increase in the number of modes.

  • PDF

Preconditioning Method of a Finite Element Combined Formulation for Fluid-Structure Interaction (유체-구조물 상호작용을 위한 유한요소 결합공식화의 예조건화에 대한 연구)

  • Choi, Hyoung-Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.4
    • /
    • pp.242-247
    • /
    • 2009
  • AILU type preconditioners for a two-dimensional combined P2P1 finite element formulation of the interaction of rigid cylinder with incompressible fluid flow have been devised and tested by solving fluid-structure interaction (FSI) problems. The FSI code simulating the interaction of a rigid cylinder with an unsteady flow is based on P2P1 mixed finite element formulation coupled with combined formulation. Four different preconditioners were devised for the two-dimensional combined P2P1 finite element formulation extending the idea of Nam et al., which was proposed for the preconditioning of a P2P1 mixed finite element formulation of the incompressible Navier-Stokes equations. It was found that PC-III or PC-IV among them perform well with respect to computational memory and convergence rate for some bench-mark problems.

Investigation of the effects of miniscrew-assisted rapid palatal expansion on airflow in the upper airway of an adult patient with obstructive sleep apnea syndrome using computational fluid-structure interaction analysis

  • Hur, Jae-Sik;Kim, Hyoung-Ho;Choi, Jin-Young;Suh, Sang-Ho;Baek, Seung-Hak
    • The korean journal of orthodontics
    • /
    • v.47 no.6
    • /
    • pp.353-364
    • /
    • 2017
  • Objective: The objective of this study was to investigate the effects of miniscrew-assisted rapid palatal expansion (MARPE) on changes in airflow in the upper airway (UA) of an adult patient with obstructive sleep apnea syndrome (OSAS) using computational fluid-structure interaction analysis. Methods: Three-dimensional UA models fabricated from cone beam computed tomography images obtained before (T0) and after (T1) MARPE in an adult patient with OSAS were used for computational fluid dynamics with fluid-structure interaction analysis. Seven and nine cross-sectional planes (interplane distance of 10 mm) in the nasal cavity (NC) and pharynx, respectively, were set along UA. Changes in the cross-sectional area and changes in airflow velocity and pressure, node displacement, and total resistance at maximum inspiration (MI), rest, and maximum expiration (ME) were investigated at each plane after MARPE. Results: The cross-sectional areas at most planes in NC and the upper half of the pharynx were significantly increased at T1. Moreover, airflow velocity decreased in the anterior NC at MI and ME and in the nasopharynx and oropharynx at MI. The decrease in velocity was greater in NC than in the pharynx. The airflow pressure in the anterior NC and entire pharynx exhibited a decrease at T1. The amount of node displacement in NC and the pharynx was insignificant at both T0 and T1. Absolute values for the total resistance at MI, rest, and ME were lower at T1 than at T0. Conclusions: MARPE improves airflow and decreases resistance in UA; therefore, it may be an effective treatment modality for adult patients with moderate OSAS.