• Title/Summary/Keyword: structural wall

Search Result 1,743, Processing Time 0.023 seconds

Ramifications of Structural Deformations on Collapse Loads of Critically Cracked Pipe Bends Under In-Plane Bending and Internal Pressure

  • Sasidharan, Sumesh;Arunachalam, Veerappan;Subramaniam, Shanmugam
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.254-266
    • /
    • 2017
  • Finite-element analysis based on elastic-perfectly plastic material was conducted to examine the influence of structural deformations on collapse loads of circumferential through-wall critically cracked $90^{\circ}$ pipe bends undergoing in-plane closing bending and internal pressure. The critical crack is defined for a through-wall circumferential crack at the extrados with a subtended angle below which there is no weakening effect on collapse moment of elbows subjected to in-plane closing bending. Elliptical and semioval cross sections were postulated at the bend regions and compared. Twice-elastic-slope method was utilized to obtain the collapse loads. Structural deformations, namely, ovality and thinning, were each varied from 0% to 20% in steps of 5% and the normalized internal pressure was varied from 0.2 to 0.6. Results indicate that elliptic cross sections were suitable for pipe ratios 5 and 10, whereas for pipe ratio 20, semioval cross sections gave satisfactory solutions. The effect of ovality on collapse loads is significant, although it cancelled out at a certain value of applied internal pressure. Thinning had a negligible effect on collapse loads of bends with crack geometries considered.

Investigation of design values computation of wood shear walls constructed with structural foam sheathing

  • Shadravan, Shideh;Ramseyer, Chris C.
    • Advances in Computational Design
    • /
    • v.4 no.3
    • /
    • pp.223-238
    • /
    • 2019
  • This study investigated the ultimate lateral load capacity of shear walls constructed with several types of structural foam sheathing. Sixteen tests were conducted and the results were compared to the published design values commutated by the manufactures for each test series. The sheathing products included 12.7 mm (1/2 in) SI-Strong, 25.4 mm (1 in) SI-Strong, 12.7 mm (1/2 in) R-Max Thermasheath, and 2 mm (0.078 in) ThermoPly Green. The structural foam sheathing was attached per the manufacturers' specification to one side of the wood frame for each wall tested. Standard 12.7 mm (1/2 in) gypsum wallboard was screwed to the opposite side of the frame. Simpson HDQ8 tie-down anchors were screwed to the terminal studs at each end of the wall and anchored to the base of the testing apparatus. Both monotonic and cyclic testing following ASTM E564 and ASTM E2126, respectively, were considered. Results from the monotonic tests showed an 11 to 27 percent smaller capacity when compared to the published design values. Likewise, the test results from the cyclic tests showed a 24 to 45 percent smaller capacity than the published design values and did not meet the seismic performance design criteria computation.

Investigation of wall flexibility effects on seismic behavior of cylindrical silos

  • Livaoglu, Ramazan;Durmus, Aysegul
    • Structural Engineering and Mechanics
    • /
    • v.53 no.1
    • /
    • pp.159-172
    • /
    • 2015
  • This paper is concerned with effects of the wall flexibility on the seismic behavior of ground-supported cylindrical silos. It is a well-known fact that almost all analytical approximations in the literature to determine the dynamic pressure stemming from the bulk material assume silo structure as rigid. However, it is expected that the horizontal dynamic material pressures can be modified due to varying horizontal extensional stiffness of the bulk material which depends on the wall stiffness. In this study, finite element analyses were performed for six different slenderness ratios according to both rigid and flexible wall approximations. A three dimensional numerical model, taking into account bulk material-silo wall interaction, constituted by ANSYS commercial program was used. The findings obtained from the numerical analyses were discussed comparatively for rigid and flexible wall approximations in terms of the dynamic material pressure, equivalent base shear and bending moment. The numerical results clearly show that the wall flexibility may significantly affects the characteristics behavior of the reinforced concrete (RC) cylindrical silos and magnitudes of the responses under strong ground motions.

Experimental investigation of retrofitted shear walls reinforced with welded wire mesh fabric

  • Yuksel, Suleyman B.
    • Structural Engineering and Mechanics
    • /
    • v.70 no.2
    • /
    • pp.133-141
    • /
    • 2019
  • The aim of the present paper is to present the cyclic behavior of strengthened reinforced concrete shear wall test specimen, which was reinforced with cold drawn welded wire mesh fabric. Two reinforced concrete shear wall specimens have been tested in the present study. The walls were tested under reversed cyclic loading with loading applied near the tip of the walls. The control wall is tested in its original state to serve as a baseline for the evaluation of the repair and strengthening techniques. The two test specimens include a control wall and a repaired wall. The control wall test specimen was designed and detailed to simulate non-ductile reinforced concrete shear walls that do not meet the modern seismic provisions. The response of the original wall was associated with the brittle failure. The control shear wall was repaired by addition of the reinforcements and the concrete and then it was reloaded. The effectiveness of the repair technique was investigated. Test results indicate that there can be a near full restoration of the walls' strength. The data from this test, augmenting other data available in the literature, will be useful in calibrating improved analytical methods as they are developed.

Seismic Analysis of Liquid Storage Structures sing Eulerian Formulation (Eulerian 기법을 이용한 유체저장구조물의 지진해석)

  • 윤정방;김재민;김영석;전영선
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.10a
    • /
    • pp.43-48
    • /
    • 1991
  • In this paper the liquid sloshing effects in rectangular liquid stroage structures under earthquake loadings are studied. The study focuses on the investigation of the effect of the flexibility of the stroage wall. The storage structure is modelled using beam elements. The motion of the liquid is expressed by the Laplace equation. The equation of motion is formulated including the coupling between the wall motion and the sloshing motion. Seismic analyses have been carried out utilizing the response spectra method.

  • PDF

Structural Performance Evaluation of Severely Damaged Walls After Repaired (지진피해가 심한 벽체의 보수 후 구조성능 평가)

  • 오창화;유승욱;한상환;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.513-516
    • /
    • 1999
  • The objective of this study is to evaluate the performance of the repaired structural walls which were severly damaged. After damaging the wall specimens by experimental test, the walls were repaired and retested to destruction. For the repairing the severly damaged walls, new concrete and new reinforcing bar are replaced with cracked concrete and the buckled reinforcing bar, respectively. The performance of repaired wall specimens are compared with that of undamaged walls.

  • PDF

Effects of Web Reinforcement Amount on Hysteretic Behavior of High Strength Reinforced Concrete Structural Walls (전단보강근비에 따른 고강도 철근콘크리트 내력벽의 이력특성)

  • 최근도;정학영;윤현도;최장식;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.04a
    • /
    • pp.85-90
    • /
    • 1994
  • Three high strength reinforced concrete structural walls were tested under the combined action of a constant axial and a horizontal cycle load. The aim of the tests has been to investigate the effects of the web horizontal reinforcement on hysteretic behavior of wall. The results have helped to identify the causes of wall failure and have demonstrated the web horizontal reinforcement does not appear have a significant effect on shear capacity, stiffness and energy dissipation but have a significant effect on the failure mode of the walls.

  • PDF

A Study for Transfer Girder Details of the Upper-Wall and Lower-Frame Structures (주상복합구조의 전이보 상세설계기법 연구)

  • 이한선;김상연;고동우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.529-534
    • /
    • 2000
  • Hybrid building structure, which comprise both the residential and commercial spaces in a building, are composed of upper shear-walls and lower frames. In these hybrid structures, the structural analysis and design of transfer systems which link upper-wall and lower-frame are crucial. The available structural design methods for the transfer girder are performed by taking a prototype structure, and the details of transfer girder based on these design methods are presented and compared with regard to the dimensions and amount of reinforcements.

  • PDF

Improvement of Fire Resistance for Timber Framed Walls by Reinforcement of Heavy Timber Frame

  • Park, Joo-Saeng;Hwang, Kweon-Hwan;Kim, Kwang-Mo
    • Journal of the Korea Furniture Society
    • /
    • v.21 no.6
    • /
    • pp.469-478
    • /
    • 2010
  • Fire resistance of new hybrid timber framed wall systems was evaluated in this study. These wall systems are composed of two major structural parts. One part is a heavy timber frame part designed to take charge of whole vertical load using heavy timber post and beam, and the other is an infill wall structure, designed to take charge of whole horizontal load and to provide an established level of fire resistance. A basic concept of this hybrid wall is adopted from a typical furniture structure with frame. A timber post and beam frame is constructed with Japanese Larch solid timber post(180mm by 180mm) and beam(180mm by 240mm). As infill wall systems, two types of walls are applied. One is a typical light timber framed wall with solid blocking and another is a structural insulated panel wall, in which polystyrene insulation is filled between two structural panels to make single structure. For all tested walls, two layers of 12.5mm thick type-X gypsum boards are used on fire exposed side. Prior to tests for hybrid walls, only infill walls are tested without heavy timber frame. All fire resistance tests are carried out in accordance with KS F 2257, and temperatures on several points within wall structure and unexposed wall surface are measured during fire tests. It is considered that the reinforcement of heavy timber frame is significantly efficient for improving the fire resistance of timber framed walls.

  • PDF