• Title/Summary/Keyword: structural system identification

Search Result 504, Processing Time 0.022 seconds

Bridge Safety Evaluation Based on the System Identification (구조동정법(構造同定法)에 의한 교량(橋梁)의 안전성(安全性) 평가(評價))

  • Kim, Kee-Dae;Lee, Sang-Wha
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.2
    • /
    • pp.162-169
    • /
    • 1998
  • This paper presents the application of system identification approaches for the safety assessment of RC-T type bridge based on the result of field test. For these problems, the moment of inertia of cross-sectional area and the natural frequency of bridge were used as structural parameters, the SAP90 program for the structural analysis and the SLP method for the minimum error. As a result, it is found that the proposed algorithm for this study appears applicable to real structures with reasonable complexity. It is shown that the introduction of approximate quadratic equations is more realistic and timesaving than the common methods.

  • PDF

A Study on Improving the Accuracy of Finite Element Modeling Using System Identification Technique (S. I. 기법을 이용한 유한요소모델의 신뢰도 제고에 관한 연구)

  • 양경택
    • Computational Structural Engineering
    • /
    • v.10 no.2
    • /
    • pp.149-160
    • /
    • 1997
  • Mechanical structures are composed of substructures connected by joints and boundary elements. While the finite element representation of plain substructures is well developed and reliable, joints have a lot of uncertainties in being accurately modelled and affect dynamic behavior of a total system. In order to improve the accuracy of a finite element model, a new method is proposed, in which reduced finite element model is combined with a system identification technique. After substructures except joints are modelled with finite element method and joint properties are represented by parameter states, non-linear state equation is derived in which parameter states are multiplied by physical states such as displacements and velocities. So the joint parameter identification is transformed into non-linear state estimation problem. The methods are tested and discussed numerically and the feasibility for physical application has been demonstrated through two example structures.

  • PDF

HHT method for system identification and damage detection: an experimental study

  • Zhou, Lily L.;Yan, Gang
    • Smart Structures and Systems
    • /
    • v.2 no.2
    • /
    • pp.141-154
    • /
    • 2006
  • Recently, the Hilbert-Huang transform (HHT) has gained considerable attention as a novel technique of signal processing, which shows promise for the system identification and damage detection of structures. This study investigates the effectiveness and accuracy of the HHT method for the system identification and damage detection of structures through a series of experiments. A multi-degree-of-freedom (MDOF) structural model has been constructed with modular members, and the columns of the model can be replaced or removed to simulate damages at different locations with different severities. The measured response data of the structure due to an impulse loading is first decomposed into modal responses using the empirical mode decomposition (EMD) approach with a band-pass filter technique. Then, the Hilbert transform is subsequently applied to each modal response to obtain the instantaneous amplitude and phase angle time histories. A linear least-square fit procedure is used to identify the natural frequencies and damping ratios from the instantaneous amplitude and phase angle for each modal response. When the responses at all degrees of freedom are measured, the mode shape and the physical mass, damping and stiffness matrices of the structure can be determined. Based on a comparison of the stiffness of each story unit prior to and after the damage, the damage locations and severities can be identified. Experimental results demonstrate that the HHT method yields quite accurate results for engineering applications, providing a promising tool for structural health monitoring.

Identification of prestress force in a prestressed Timoshenko beam

  • Lu, Z.R.;Liu, J.K.;Law, S.S.
    • Structural Engineering and Mechanics
    • /
    • v.29 no.3
    • /
    • pp.241-258
    • /
    • 2008
  • This paper presents a new identification approach to prestress force. Firstly, a bridge deck is modeled as a prestressed Timoshenko beam. The time domain responses of the beam under sinusoidal excitation are studied based on modal superposition. The prestress force is then identified in the time domain by a system identification approach incorporating with the regularization of the solution. The orthogonal polynomial function is used to improve the noise effect and obtain the derivatives of modal responses of the bridge. Good identification results are obtained from only the first few measured modal data under both sinusoidal and impulsive excitations. It is shown that the proposed method is insensitive to the magnitude of force to be identified and can be successfully applied to indirectly identify the prestress force as well as other physical parameters, such as the flexural rigidity and shearing rigidity of a beam even under noisy environment.

Influence of wind disturbance on smart stiffness identification of building structure using limited micro-tremor observation

  • Koyama, Ryuji;Fujita, Kohei;Takewaki, Izuru
    • Structural Engineering and Mechanics
    • /
    • v.56 no.2
    • /
    • pp.293-315
    • /
    • 2015
  • While most of researches on system identification of building structures are aimed at finding modal parameters first and identifying the corresponding physical parameters by using the transformation in terms of transfer functions and cross spectra, etc., direct physical parameter system identification methods have been proposed recently. Due to the problem of signal/noise (SN) ratios, the previous methods are restricted mostly to earthquake records or forced vibration data. In this paper, a theoretical investigation is performed on the influence of wind disturbances on stiffness identification of building structures using micro-tremor at limited floors. It is concluded that the influence of wind disturbances on stiffness identification of building structures using micro-tremor at limited floors is restricted in case of using time-series data for low-rise buildings and does not cause serious problems.

Developing an integrated software solution for active-sensing SHM

  • Overly, T.G.;Jacobs, L.D.;Farinholt, K.M.;Park, G.;Farrar, C.R.;Flynn, E.B.;Todd, M.D.
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.457-468
    • /
    • 2009
  • A novel approach for integrating active sensing data interrogation algorithms for structural health monitoring (SHM) applications is presented. These algorithms cover Lamb wave propagation, impedance methods, and sensor diagnostics. Contrary to most active-sensing SHM techniques, which utilize only a single signal processing method for damage identification, a suite of signal processing algorithms are employed and grouped into one package to improve the damage detection capability. A MATLAB-based user interface, referred to as HOPS, was created, which allows the analyst to configure the data acquisition system and display the results from each damage identification algorithm for side-by-side comparison. By grouping a suite of algorithms into one package, this study contributes to and enhances the visibility and interpretation of the active-sensing methods related to damage identification. This paper will discuss the detailed descriptions of the damage identification techniques employed in this software and outline future issues to realize the full potential of this software.

A combined spline chirplet transform and local maximum synchrosqueezing technique for structural instantaneous frequency identification

  • Ping-Ping Yuan;Zhou-Jie Zhao;Ya Liu;Zhong-Xiang Shen
    • Smart Structures and Systems
    • /
    • v.33 no.3
    • /
    • pp.201-215
    • /
    • 2024
  • Spline chirplet transform and local maximum synchrosqueezing are introduced to present a novel structural instantaneous frequency (IF) identification method named local maximum synchrosqueezing spline chirplet transform (LMSSSCT). Namely spline chirplet transform (SCT), a transform is firstly introduced based on classic chirplet transform and spline interpolated kernel function. Applying SCT in association with local maximum synchrosqueezing, the LMSSSCT is then proposed. The index of accuracy and Rényi entropy show that LMSSSCT outperforms the other time-frequency analysis (TFA) methods in processing analytical signals, especially in the presence of noise. Numerical examples of a Duffing nonlinear system with single degree of freedom and a two-layer shear frame structure with time-varying stiffness are used to verify the effectiveness of structural IF identification. Moreover, a nonlinear supported beam structure test is conducted and the LMSSSCT is utilized for structural IF identification. Numerical simulation and experimental results demonstrate that the presented LMSSSCT can effectively identify the IFs of nonlinear structures and time-varying structures with good accuracy and stability.

Structural evaluation of an existing steel natatorium by FEM and dynamic measurement

  • Liu, Wei;Gao, Wei-Cheng;Sun, Yi;Yu, Yan-Lei
    • Structural Engineering and Mechanics
    • /
    • v.31 no.5
    • /
    • pp.507-526
    • /
    • 2009
  • Based on numerical and experimental methods, a systematic structural evaluation of a steel natatorium in service was carried out in detail in this paper. Planning of inspection tasks was proposed firstly according to some national codes in China in order to obtain the economic and reliable results. The field visual inspections and static computation were conducted in turn under in-service environmental conditions. Further a three-dimensional finite element model was developed according to its factual geometry properties obtained from the field inspection. An analytical modal analysis was performed to provide the analytical modal properties. The field vibration tests on the natatorium were conducted and then two different system identification methods were used to obtain the dynamic characteristics of the natatorium. A good correlation was achieved in results obtained from the two system identification methods and the finite element method (FEM). The numerical and experimental results demonstrated that the main structure of the natatorium in its present status is safe and it still satisfies the demand of the national codes in China. But the roof system such as purlines and skeletons must be removed and rebuilt completely. Moreover the system identification results showed that field vibration test is sufficient to identify the reliable dynamic properties of the natatorium. The constructive suggestion on structural evaluation of the natatorium is that periodic assessment work must be maintained to ensure the natatorium's safety in the future.

Selection of measurement sets in static structural identification of bridges using observability trees

  • Lozano-Galant, Jose Antonio;Nogal, Maria;Turmo, Jose;Castillo, Enrique
    • Computers and Concrete
    • /
    • v.15 no.5
    • /
    • pp.771-794
    • /
    • 2015
  • This paper proposes an innovative method for selection of measurement sets in static parameter identification of concrete or steel bridges. This method is proved as a systematic tool to address the first steps of Structural System Identification procedures by observability techniques: the selection of adequate measurement sets. The observability trees show graphically how the unknown estimates are successively calculated throughout the recursive process of the observability analysis. The observability trees can be proved as an intuitive and powerful tool for measurement selection in beam bridges that can also be applied in complex structures, such as cable-stayed bridges. Nevertheless, in these structures, the strong link among structural parameters advises to assume a set of simplifications to increase the tree intuitiveness. In addition, a set of guidelines are provided to facilitate the representation of the observability trees in this kind of structures. These guidelines are applied in bridges of growing complexity to explain how the characteristics of the geometry of the structure (e.g. deck inclination, type of pylon-deck connection, or the existence of stay cables) affect the observability trees. The importance of the observability trees is justified by a statistical analysis of measurement sets randomly selected. This study shows that, in the analyzed structure, the probability of selecting an adequate measurement set with a minimum number of measurements at random is practically negligible. Furthermore, even bigger measurement sets might not provide adequate SSI of the unknown parameters. Finally, to show the potential of the observability trees, a large-scale concrete cable-stayed bridge is also analyzed. The comparison with the number of measurements required in the literature shows again the advantages of using the proposed method.