• 제목/요약/키워드: structural stiffness degradation

검색결과 163건 처리시간 0.021초

Soil structure interaction effects on structural parameters for stiffness degrading systems built on soft soil sites

  • Aydemir, Muberra Eser
    • Structural Engineering and Mechanics
    • /
    • 제45권5호
    • /
    • pp.655-676
    • /
    • 2013
  • In this study, strength reduction factors and inelastic displacement ratios are investigated for SDOF systems with period range of 0.1-3.0 s considering soil structure interaction for earthquake motions recorded on soft soil. The effect of stiffness degradation on strength reduction factors and inelastic displacement ratios is investigated. The modified-Clough model is used to represent structures that exhibit significant stiffness degradation when subjected to reverse cyclic loading and the elastoplastic model is used to represent non-degrading structures. The effect of negative strain - hardening on the inelastic displacement and strength of structures is also investigated. Soil structure interacting systems are modeled and analyzed with effective period, effective damping and effective ductility values differing from fixed-base case. For inelastic time history analyses, Newmark method for step by step time integration was adapted in an in-house computer program. New equations are proposed for strength reduction factor and inelastic displacement ratio of interacting system as a function of structural period($\tilde{T}$, T) ductility (${\mu}$) and period lengthening ratio ($\tilde{T}$/T).

Influence of pinching effect of exterior joints on the seismic behavior of RC frames

  • Favvata, Maria J.;Karayannis, Chris G.
    • Earthquakes and Structures
    • /
    • 제6권1호
    • /
    • pp.89-110
    • /
    • 2014
  • Nonlinear dynamic analyses are carried out to investigate the influence of the pinching hysteretic response of the exterior RC beam-column joints on the seismic behavior of multistory RC frame structures. The effect of the pinching on the local and global mechanisms of an 8-storey bare frame and an 8-storey pilotis type frame structure is evaluated. Further, an experimental data bank extracted from literature is used to acquire experimental experience of the range of the real levels that have to be considered for the pinching effect on the hysteretic response of the joints. Thus, three different cases for the hysteretic response of the joints are considered: (a) joints with strength and stiffness degradation characteristics but without pinching effect, (b) joints with strength degradation, stiffness degradation and low pinching effect and (c) joints with strength degradation, stiffness degradation and high pinching effect. For the simulation of the beam-column joints a special-purpose rotational spring element that incorporates the examined hysteretic options developed by the authors and implemented in a well-known nonlinear dynamic analysis program is employed for the analysis of the structural systems. The results of this study indicate that the effect of pinching on the local and global responses of the examined cases is not really significant at early stages of the seismic loading and especially in the cases when strength degradation in the core of exterior joint has occurred. Nevertheless in the cases when strength degradation does not occur in the joints the pinching may increase the demands for ductility and become critical for the columns at the base floor of the frame structures. Finally, as it was expected the ability for energy absorption was reduced due to pinching effect.

킥모터 FM 규격 연소관에 대한 강성저하 평가 및 파열압력 측정 (Evaluation of Structural Stiffness Degradation and Burst Pressure Measurement of the FM Kick-Motor Combustion Case)

  • 이무근;조인현;김중석;이원복
    • 항공우주기술
    • /
    • 제9권1호
    • /
    • pp.72-77
    • /
    • 2010
  • 필라멘트 와인딩으로 제작된 고체 모터 연소관의 구조강성저하 평가 및 파열특성을 확인하기 위한 수압시험을 수행하였다. 본 연소관의 파손 요구조건으로서 운용 중 최대 예상압력(MEOP)의 1.5배 이상의 압력에서 실린더 파손이 일어나야함을 제시하였다. 해석 결과 연소관의 내부압력이 2088psig 일 때 실린더층의 섬유가 끊어지는 것으로 나타났으며 수압시험을 수행하여 2200psig 수준에서 실린더 부위가 파손됨을 검증하였다. 또한 제작 후 1년 정도 경과 후에도 강성저하가 없음을 알 수 있었다.

교대인접토체의 특성에 따른 강성저하를 고려한 교량시스템의 지진거동분석 (Dynamic Behaviors of a Bridge under Seismic Excitations Considering Stiffness Degradation with Various Abutment-Soil Conditions)

  • 김상효;마호성;경규혁;이상우
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 봄 학술발표회논문집
    • /
    • pp.347-354
    • /
    • 2000
  • The seismic behaviors of a bridge system with several simple spans are examined to see the effects of the longitudinal stiffness degradation due to abutment-soil interaction. The abutment-backfill system is modeled as one degree-of-freedom-system with nonlinear spring and linear damper. various soil-conditions surrounding the abutment such as loose sand, medium dense sand, and dense sand are considered in the bridge seismic analysis. The idealized mechanical model for the whole bridge system is modeled by adopting the multiple-degree-of-freedom system, which can consider components such as pounding phenomena, friction at the movable supports, rotational and translational motions of foundations, and the nonlinear pier motions. The stiffness of the abutment is found to be rapidly reduced at the beginning of the earthquakes, and to be converged to constant values shortly after the displacement approaches to the Predefined critical values. It is observed that the maximum relative distanced an maximum relative displacements are generally Increased as the relative density of a soil decreases As the peak ground acceleration increases, the response ratio of the case considering stiffness degradation to the case considering constant stiffness decreases.

  • PDF

Inelastic displacement ratios for evaluation of stiffness degrading structures with soil structure interaction built on soft soil sites

  • Aydemir, Muberra Eser
    • Structural Engineering and Mechanics
    • /
    • 제45권6호
    • /
    • pp.741-758
    • /
    • 2013
  • In this study, inelastic displacement ratios are investigated for existing systems with known lateral strength considering soil structure interaction. For this purpose, SDOF systems for period range of 0.1-3.0 s with different hysteretic behaviors are considered for a number of 18 earthquake motions recorded on soft soil. The effect of stiffness degradation on inelastic displacement ratios is investigated. The Modified Clough model is used to represent structures that exhibit significant stiffness degradation when subjected to reverse cyclic loading and the elastoplastic model is used to represent non-degrading structures. Soil structure interaction analyses are conducted by means of equivalent fixed base model effective period, effective damping and effective ductility values differing from fixed-base case. For inelastic time history analyses, Newmark method for step by step time integration was adapted in an in-house computer program. A new equation is proposed for inelastic displacement ratio of system with SSI with elastoplastic or degrading behavior as a function of structural period ($\tilde{T}$), strength reduction factor (R) and period lengthening ratio ($\tilde{T}$/T). The proposed equation for $\tilde{C}_R$ which takes the soil-structure interaction into account should be useful in estimating the inelastic deformation of existing structures with known lateral strength.

Numerical modeling and analysis of RC frames subjected to multiple earthquakes

  • Abdelnaby, Adel E.;Elnashai, Amr S.
    • Earthquakes and Structures
    • /
    • 제9권5호
    • /
    • pp.957-981
    • /
    • 2015
  • Earthquakes occur as a cluster in many regions around the world where complex fault systems exist. The repeated shaking usually induces accumulative damage to affected structures. Damage accumulation in structural systems increases their level of degradation in stiffness and also reduces their strength. Many existing analytical tools of modeling RC structures lack the salient damage features that account for stiffness and strength degradation resulting from repeated earthquake loading. Therefore, these tools are inadequate to study the response of structures in regions prone to multiple earthquakes hazard. The objective of this paper is twofold: (a) develop a tool that contains appropriate damage features for the numerical analysis of RC structures subjected to more than one earthquake; and (b) conduct a parametric study that investigates the effects of multiple earthquakes on the response of RC moment resisting frame systems. For this purpose, macroscopic constitutive models of concrete and steel materials that contain the aforementioned damage features and are capable of accurately capturing materials degrading behavior, are selected and implemented into fiber-based finite element software. Furthermore, finite element models that utilize the implemented concrete and steel stress-strain hysteresis are developed. The models are then subjected to selected sets of earthquake sequences. The results presented in this study clearly indicate that the response of degrading structural systems is appreciably influenced by strong-motion sequences in a manner that cannot be predicted from simple analysis. It also confirms that the effects of multiple earthquakes on earthquake safety can be very considerable.

Fatigue modeling of chopped strand mat/epoxy composites

  • Shokrieh, M.M.;Esmkhania, M.;Taheri-Behrooz, F.
    • Structural Engineering and Mechanics
    • /
    • 제50권2호
    • /
    • pp.231-240
    • /
    • 2014
  • In the present research, fatigue behavior of chopped strand mat/epoxy composites has been studied with two different techniques. First, the normalized stiffness degradation approach as a well-known model for unidirectional and laminated composites was utilized to predict the fatigue behavior of chopped strand mat/epoxy composites. Then, the capability of the fatigue damage accumulation model for chopped strand mat/epoxy composites was investigated. A series of tests has been performed at different stress levels to evaluate both models with the obtained results. The results of evaluation indicate a better correlation of the normalized stiffness degradation technique with experimental results in comparison with the fatigue damage accumulation model.

지진하중에 의한 철근콘크리트 전단벽의 강성 저하에 관한 연구 (Stiffness Degradation Induced by Seismic Loading on a RC Shear Wall)

  • 이윤
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제26권3호
    • /
    • pp.48-54
    • /
    • 2022
  • 본 연구는 균열에 의한 콘크리트 전단벽 강성저하 영향 평가를 위해 수행되었으며, 극한 내지진 하중의 60%까지 재하한 비선형 해석 결과, 사전 균열효과에 의해 비손상 대비 진동수의 12%정도 진동수가 감소하였으며 강성 측면에서 23%정도의 감소현상을 나타냈다. 단계적으로 지진하중의 크기를 증가시킨 비선형 해석 결과, 지진하중의 세기가 커짐에 따라 콘크리트 전단벽체에 전단균열이 발생하여 진전함을 파악하고, 반복이력에 의한 에너지 손실과 강성 저하가 뚜렷하게 발생함을 알 수 있었다. 또한 두 가지 콘크리트 강도와 전단벽 제원에 대하여 지진하중의 크기가 극한 내지진 하중에 근접함에 따라 진동수의 감소량은 비손상 대비 10~40%정도로 나타났으며, 강성의 경우 비손상 대비 40%정도 수준까지 감소할 수 있는 것으로 나타났다.

Glass Fiber 배향성이 충격 파괴에 미치는 영향: 사출-구조 연성해석 (Effect of Glass Fiber Orientation on Impact Fracture Properties: Coupled Injection Molding & Structural Analysis)

  • 김웅
    • 소성∙가공
    • /
    • 제32권3호
    • /
    • pp.129-135
    • /
    • 2023
  • The use of engineering plastic products in internal combustion engine and electric cars to improve stiffness and reduce weight is increasing significantly. Among various lightweight materials, engineering plastics have significant advantages such as cost reduction, improved productivity, and weight reduction. In particular, engineering plastics containing glass fibers are used to enhance stiffness. However, the stiffness of glass fibers can increase or decrease depending on their orientation. Before developing plastic products, optimal designs are determined through injection molding and structural analysis to enhance product reliability. However, reliable analysis of products with variable stiffnesses caused by anisotropy cannot be achieved via the conventional isotropic structural analysis, which does not consider anisotropy. Therefore, based on the previously reported study "the Effect of Impacted Fracture in Glass Fiber Orientation with Injection Molding & Structural Coupled Analysis," this study aims to investigate the structural analysis and degradation mechanisms of various polymers. In particular, this study elucidates the actual mechanism of plastic fracture by analyzing various fracture conditions and their corresponding simulations. Furthermore, the objective of this study is to apply the injection molding and structural coupled analysis mechanism to develop engineering plastic products containing glass fibers. In addition, the study aims to apply and improve the plastic fracture mechanism in actual products by exploring anisotropy and stiffness reduction owing to the unfilled polymer weld line.

Seismic behaviors of ring beams joints of steel tube-reinforced concrete column structure

  • Zhang, Yingying;Pei, Jianing;Huang, Yuan;Lei, Ke;Song, Jie;Zhang, Qilin
    • Steel and Composite Structures
    • /
    • 제27권4호
    • /
    • pp.417-426
    • /
    • 2018
  • This paper presents the seismic behaviors and restoring force model of ring beam joints of steel tube-reinforced concrete column structure under cyclic loading. First, the main failure mode, ultimate bearing capacity, stiffness degradation and energy dissipation capacity are studied. Then, the effects of concrete grade, steel grade, reinforcement ratio and radius-to-width ratios are discussed. Finally, the restoring force model is proposed. Results show that the ring beam joints of steel tube-reinforced concrete column structure performs good seismic performances. With concrete grade increasing, the ultimate bearing capacity and energy dissipation capacity increase, while the stiffness degradation rates increases slightly. When the radius-width ratio is 2, with reinforcement ratio increasing, the ultimate bearing capacity decreases. However, when the radius-to-width ratios are 3, with reinforcement ratio increasing, the ultimate bearing capacity increases. With radius-to-width ratios increasing, the ultimate bearing capacity decreases slightly and the stiffness degradation rate increases, but the energy dissipation capacity increases slightly.