• Title/Summary/Keyword: structural safety assessment

Search Result 588, Processing Time 0.023 seconds

Change in the Concrete Strength of Forest Road Drainage Systems Caused by Forest Fires (산불로 인한 임도 배수시설의 콘크리트 강도 변화)

  • Ye Jun Choe;Jin-Seong Hwang;Young-In Hwang;Hyeon-Jun Jeon;Hyeong-Keun Kweon;Joon-Woo Lee
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.4
    • /
    • pp.451-458
    • /
    • 2023
  • As forest fires continue to increase in scale worldwide, the importance of forest roads in relation to forest fire prevention and suppression has become increasingly evident. To ensure effective functioning during a forest fire disaster, it is crucial to apply appropriate road planning and ensure roads' structural integrity. However, previous studies have predominantly focused on the impact of forest fires on firebreak efficacy and road placement, meaning that insufficient attention has been paid to ensuring the safety of these facilities. Therefore, this study sought to compare the strength of concrete facilities within areas damaged by forest fires over the past three years by using the rebound hammer test to identify signs of thermal degradation. The results revealed that concrete facilities damaged by forest fires exhibited significantly lower strength (15.6 MPa) when compared with undamaged facilities (18.0 MPa) (p<0.001), and this trend was consistent across all the target facilities. Consequently, it is recommended that safety assessment criteria for concrete forest road facilities be established to prevent secondary disasters following forest fire damage. Moreover, continuous monitoring and research involving indoor experiments are imperative in terms of enhancing the stability of forest road structures. It is expected that such research will lead to the development of more effective strategies for forest fire prevention and suppression.

Mechanical Stability Analysis to Determine the Optimum Aspect Ratio of Rock Caverns for Thermal Energy Storage (열에너지 저장용 암반 공동의 최적 종횡비 결정을 위한 역학적 안정성 해석)

  • Park, Dohyun;Ryu, Dongwoo;Choi, Byung-Hee;Sunwoo, Choon;Han, Kong-Chang
    • Tunnel and Underground Space
    • /
    • v.23 no.2
    • /
    • pp.150-159
    • /
    • 2013
  • It is generally well known that the stratification of thermal energy in heat stores can be improved by increasing the aspect ratio (the height-to-width ratio) of the stores. Accordingly, it will be desirable to apply a high aspect ratio so as to demonstrate the good thermal performance of heat stores. However, as the aspect ratio of a store increases, the height of the store become larger compared to its width, which may be unfavorable for the structural stability of the store. Therefore, to determine an optimum aspect ratio of heat stores, a quantitative mechanical stability assessment should be performed in addition to thermal performance evaluations. In the present study, we numerically investigated the mechanical stability of silo-shaped rock caverns for underground thermal energy storage at different aspect ratios. The applied aspect ratios ranged from 1 to 6 and the mechanical stability was examined based on factor of safety using a shear strength reduction method. The results from the present study showed that the factor of safety of rock caverns tended to decrease with the increase in aspect ratio and the stress ratio of the surrounding rock mass was influential to the stability of the caverns. In addition, the numerical results demonstrated that under the same conditions of rock mass properties and aspect ratio, mechanical stability could be improved by the reduction in cavern size (storage volume), which indicates that one can design high-aspect-ratio rock caverns by dividing a single large cavern into multiple small caverns.

Assessment of the Structural Collapse Behavior of Between Offshore Supply Vessel and Leg in the Jack-up Drilling Rig (잭업드릴링 리그의 레그와 작업 지원선 충돌에 의한 구조붕괴 거동 평가)

  • Park, Joo-Shin;Seo, Jung-Kwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.601-609
    • /
    • 2022
  • Jack-up drilling rigs are mobile offshore platforms widely used in the offshore oil and gas exploration industry. These are independent, three-legged, self-elevating units with a cantilevered drilling facility for drilling and production. A typical jack-up rig includes a triangular hull, a tower derrick, a cantilever, a jackcase, living quarters and legs which comprise three-chord, open-truss, X-braced structure with a spudcan. Generally, jack-up rigs can only operate in water depths ranging from 130m to 170m. Recently, there has been an increasing demand for jack-up rigs for operating at deeper water levels and harsher environmental conditions such as waves, currents and wind loads. All static and dynamic loads are supported through legs in the jack-up mode. The most important issue by society is to secure the safety of the leg structure against collision that causes large instantaneous impact energy. In this study, nonlinear FE -analysis and verification of the requirement against collision for 35MJ recommended by DNV was performed using LS-Dyna software. The colliding ship used a 7,500ton of shore supply vessel, and five scenarios of collisions were selected. From the results, all conditions do not satisfy the class requirement of 35MJ. The loading conditions associated with chord collision are reasonable collision energy of 15M and brace collisions are 6MJ. Therefore, it can be confirmed that the identical collision criteria by DNV need to be modified based on collision scenarios and colliding members.

High-efficiency deep geological repository system for spent nuclear fuel in Korea with optimized decay heat in a disposal canister and increased thermal limit of bentonite

  • Jongyoul Lee;Kwangil Kim;Inyoung Kim;Heejae Ju;Jongtae Jeong;Changsoo Lee;Jung-Woo Kim;Dongkeun Cho
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1540-1554
    • /
    • 2023
  • To use nuclear energy sustainably, spent nuclear fuel, classified as high-level radioactive waste and inevitably discharged after electricity generation by nuclear power plants, must be managed safely and isolated from the human environment. In Korea, the land area is limited and the amount of high-level radioactive waste, including spent nuclear fuels to be disposed, is relatively large. Thus, it is particularly necessary to maximize disposal efficiency. In this study, a high-efficiency deep geological repository concept was developed to enhance disposal efficiency. To this end, design strategies and requirements for a high-efficiency deep geological repository system were established, and engineered barrier modules with a disposal canister for pressurized water reactor (PWR)-type and pressurized heavy water reactor type Canada deuterium uranium (CANDU) plants were developed. Thermal and structural stability assessments were conducted for the repository system; it was confirmed that the system was suitable for the established strategies and requirements. In addition, the results of the nuclear safety assessment showed that the radiological safety of the new system met the Korean safety standards for disposal of high-level radioactive waste in terms of radiological dose. To evaluate disposal efficiency in terms of the disposal area, the layout of the developed disposal areas was assessed in terms of thermal limits. The estimated disposal areas were 2.51 km2 and 1.82 km2 (existing repository system: 4.57 km2) and the excavated host rock volumes were 2.7 Mm3 and 2.0 Mm3 (existing repository system: 4.5 Mm3) for thermal limits of 100 ℃ and 130 ℃, respectively. These results indicated that the area and the excavated volume of the new repository system were reduced by 40-60% compared to the existing repository system. In addition, methods to further improve the efficiency were derived for the disposal area for deep geological disposal of spent nuclear fuel. The results of this study are expected to be useful in establishing a national high-level radioactive waste management policy, and for the design of a commercial deep geological repository system for spent nuclear fuels.

Load Carrying Capacity Assessment of Bridges with Elastic Supports Application (탄성지점의 적용에 따른 교량의 내하력평가)

  • Yang, Seung-Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.5
    • /
    • pp.595-603
    • /
    • 2012
  • This study applied elastic supports in order to evaluate load carrying capacity using measurement data obtained from load tests actively and utilizing various evaluation methods. In order to confirm the adequacy of structural analysis based on elastic supports and to improve the reliability of experiment results, we conducted a deflection test with flexural beams prepared as overhanging beams and, based on the results, performed precision safety diagnosis for real bridges under public service for improving the load carrying capacity evaluation method for bridges under public service. In the results of the bending test, compared to deflection calculated by the existing method, deflection obtained by applying elastic supports was closer to the actually measured deflection. In the results of evaluating load carrying capacity for a 3 span continuous steel box girder bridge just after its completion, load carrying capacity by elastic supports was smaller by up to 39% than that by the existing method. When the load carrying capacity of bridges is evaluated by the existing method the results vary among engineers due to lack of guidelines for evaluation such as the application of stress modification factor. This study was conducted as an effort to solve this problem through active research.

A Special Purpose FE Program for the Collapse Strength Analysis of Bulk Carrier Corrugated Bulkheads Subject to Accidental Flooding (침수시 산적화물선 파형 횡격벽 붕괴강도해석 전용 유한요소 프로그램 개발)

  • Jeom-Kee Paik;Sung-Geun Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.35 no.2
    • /
    • pp.63-73
    • /
    • 1998
  • Due to the collapse of corrugated bulkheads subject to accidental flooding which is thought to be a primary cause of bulk carrier losses International Maritime Organization(IMO), the International Association of Classification Societies(IACS) and the leading classification societies are taking a growing concern for the structural safety of corrugated bulkheads of bulk carriers. To prevent progressive collapse of corrugated bulkhead in flooded condition particularly of forward cargo ho1d they try to make rules which require reinforcement of corrugated bulkhead structure. However, we are still confronted with the urgent problem of more accurate and efficient ultimate strength assessment for corrugated bulkheads. This paper develops a special purpose nonlinear FE program for analyzing progressive collapse behavior of corrugated bulkheads subject to lateral pressure loads. As verification examples, the program is applied to collapse strength analysis of steel corrugated bulkhead test model.

  • PDF

Risk Assessment of Strong Wind over Industrial Facilities in Shipyards (조선소 시설물의 강풍 위험 평가)

  • Lee, Sung-Su;Kim, Hak-Sun;Lee, Young-Kyu;Shim, Kyu-Cheoul
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.4
    • /
    • pp.21-28
    • /
    • 2009
  • Most of domestic shipyards are located at coastal regions which are affected by typhoons nearly every year. For effectiveness of shipbuilding, shipyards contain many facilities which are light-weighted and affected dominantly by wind. In the present paper, we analyze various wind fields over a shipyard including surrounding topology and structures to evaluate the structural safety of the facilities posed in the strong wind. Extreme wind speed for a study region was estimated by typhoon Monte Carlo simulation and then used for inlet wind speed for CFD analysis for wind load on the facilities. Considering geometrical wind effects, we assess the surface pressure of the elements as the pressure factor, the ratio of surface pressure to dynamic pressure. The results show that the simulated wind speed is greater than the design wind speed for the some facilities because of the shipyard's geometry. It also shows that surrounding topography in coastal area is needed to be considered and adjustment for design wind speed at wind load standard application is necessary for mooring ship and industry facilities.

A Study on Making Map of Flood Using Digital Elevation Model (DEM) (수치표고모형 (DEM)을 이용한 침수재해 지도작성에 관한 연구)

  • Lim, Hyun Taek;Kim, Jae Hwi;Lee, Hak Beom;Park, Sung Yong;Kim, Yong Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.2
    • /
    • pp.81-90
    • /
    • 2017
  • Recent floodplain data are important for river master plan, storm and flood damage reduction comprehensive plan and pre-disaster impact assessment. Hazard map, base of floodplain data, is being emphasized as important method of non-structural flood prevention and consist of inundation trace map, inundation expected map and hazard information map. Inundation trace map describes distribution of area that damaged from typhoons, heavy rain and tsunamis and includes identified flood level, flood depth and flood time from flooding area. However due to lack of these data by local government, which are foundational and supposed to be well prepared nationwide, having hard time for making inundation trace map or hazard information map. To overcome this problem, time consumption and budget reduction is required through various research. From this study, DEM (Digital Elevation Model) from image material from UAVS (Unmanned Aerial Vehicle System) and numeric geographic map from National Geographic Information Institute are used for calculating flooding damaged area and compared with inundation trace map. As results, inundation trace map DEM based on image material from UAVS had better accuracy than that used DEM based on numeric geographic map. And making hazard map could be easier and more accurate by utilizing image material from UAVS than before.

A study on the job description of paramedics (1급 응급구조사의 직무분석에 관한 연구)

  • Son, In-A
    • The Korean Journal of Emergency Medical Services
    • /
    • v.9 no.1
    • /
    • pp.43-53
    • /
    • 2005
  • The purpose of this study was to survey a perception of frequency & importance level of job performance, from 249 paramedics who were working at fire station. The job related activities of 4 duties, 18 tasks and 145 task elements were checked by 4 rating scale. The data were analyzed using a SPSS program for descriptive statistics. The results of the study were as follows ; 1. Some of the most frequent tasks were medical tx, managing people & organization, trauma care, pt assessment, general coping skill 2. Some of the most frequent task elements were preparation of written reports, operation of pt lifting supplies, transportation of patients on stretchers, administration of cervical collar and utilization of scoop stretcher. 3. Some of the highest level of importance in task were resuscitation of circulation, surgical tx, safety & infection control, environmental emergency care, trauma care. 4. Some of the highest level of importance in task elements were administration of cervical collar, adult CPR, infant CPR, child CPR, and AED. 5. The highest level of task elements in perception of frequency & importance were administration of cervical collar, infection control after pt care, utilization of long back board, disinfection of ambulance after ride a long, care of chest pain pt, care of unconscious pt, tx of asthma. 6. A difference between frequent & importance score were due to lack of supplies(41%), structural problems(30%) and medical control system(16%), lack of skills(10%), Suggestion; 1. This paper would be more reliable and confirm through wilder range of survey. 2. It would be necessary of more depth survey through dacom study from paramedic. 3. Development of field oriented protocol & curriculum that based on task elements which have high score of both frequency & importance level is required.

  • PDF

Efficiency assessment of L-profiles and pipe fore-poling pre-support systems in difficult geological conditions: a case study

  • Elyasi, Ayub;Moradi, Taher;Moharrami, Javad;Parnian, Saeid;Mousazadeh, Akbar;Nasseh, Sepideh
    • Structural Engineering and Mechanics
    • /
    • v.57 no.6
    • /
    • pp.1125-1142
    • /
    • 2016
  • Tunneling is one of the challenging tasks in civil engineering because it involves a variety of decision making and engineering judgment based on knowledge and experience. One of the challenges is to construct tunnels in risky areas under shallow overburden. In order to prevent the collapse of ceilings and walls of a large tunnels, in such conditions, either a sequential excavation method (SEM) or ground reinforcing method, or a combination of both, can be utilized. This research deals with the numerical modeling of L-profiles and pipe fore-poling pre-support systems in the adit tunnel in northwestern Iran. The first part of the adit tunnel has been drilled in alluvial material with very weak geotechnical parameters. Despite applying an SEM in constructing this tunnel, analyzing the results of numerical modeling done using FLAC3D, as well as observations during drilling, indicate the tunnel instability. To improve operational safety and to prevent collapse, pre-support systems, including pipe fore-poling and L-profiles were designed and implemented. The results of the numerical modeling coupled with monitoring during operation, as well as the results of instrumentation, indicate the efficacy of both these methods in tunnel collapse prevention. Moreover, the results of modeling using FLAC3D and SECTION BUILDER suggest a double angle with equal legs ($2L100{\times}100{\times}10mm$) in both box profile and tee array as an alternative section to pipe fore-poling system while neither $L80{\times}80{\times}8mm$ nor $2L80{\times}80{\times}8mm$ can sustain the axial and shear stresses exerted on pipe fore-poling system.