• Title/Summary/Keyword: structural response analysis

Search Result 2,908, Processing Time 0.033 seconds

Structural control of cable-stayed bridges under traveling earthquake wave excitation

  • Raheem, Shehata E Abdel
    • Coupled systems mechanics
    • /
    • v.7 no.3
    • /
    • pp.269-280
    • /
    • 2018
  • Post-earthquake damages investigation in past and recent earthquakes has illustrated that the ground motion spatial variation plays an important role in the structural response of long span bridges. For the structural control of seismic-induced vibrations of cable-stayed bridges, it is extremely important to include the effects of the ground motion spatial variation in the analysis for design of an effective control system. The feasibility and efficiency of different vibration control strategies for the cable-stayed bridge under multiple support excitations have been examined to enhance a structure's ability to withstand earthquake excitations. Comparison of the response due to non-uniform input ground motion with that due to uniform input demonstrates the importance of accounting for spatial variability of excitations. The performance of the optimized designed control systems for uniform input excitations gets worse dramatically over almost all of the evaluation criteria under multiple-support excitations.

A combined experimental and numerical method for structural response assessment applied to cable-stayed footbridges

  • Kossakowski, Pawel G.
    • Advances in Computational Design
    • /
    • v.2 no.3
    • /
    • pp.143-163
    • /
    • 2017
  • This paper presents a non-destructive testing method for estimating the structural response of cable-stayed footbridges. The approach combines field measurements with a numerical static analysis of the structure. When the experimental information concerning the structure deformations is coupled with the numerical data on the structural response, it is possible to calculate the static forces and the design tension resistance in selected structural elements, and as a result, assess the condition of the entire structure. The paper discusses the method assumptions and provides an example of the use of the procedure to assess the load-carrying capacity of a real steel footbridge. The proposed method can be employed to assess cable-stayed structures including those made of other materials, e.g., concrete, timber or composites.

Nonlinear Response Structural Optimization of a Nuclear Fuel Rod Spacer Grid Spring Using the Equivalent Load (등가하중을 이용한 원자로 핵연료봉 지지격자 스프링의 비선형 응답 구조 최적설계)

  • Kim, Do-Won;Lee, Hyun-Ah;Song, Ki-Nam;Kim, Yong-Il;Park, Gyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.694-699
    • /
    • 2007
  • The spacer grid set is a part of a nuclear fuel assembly. The set has a spring and the spring supports the fuel rods safely. Although material nonlinearity is involved in the deformation of the spring,nonlinearity has not been considered in design of the spring. Recently a nonlinear response structural optimization method has been developed using equivalent loads. It is called nonlinear response optimization equivalent loads (NROEL). In NROEL, the external loads are teansformed to the equivalent loads (EL) for linear static analysis and linear response optimization is carried out based on the EL in a cyclic manner until the convergence criteria are satisfied. EL is the load set which generates the same response no EL. The objective function is defined by minimizing the maximum stress in the spring while is limited and the support force of the spring is larger than a certain value. The results are verified by nonlinear. ABAQUS is used for nonlinear response analysis and GENESIS is employed for linear response optimization.

  • PDF

A Study for Damping Application to Response-controlled Structure

  • Shinozaki, Yozo;Mogi, Yoshihiro;Ota, Masaaki;Yoshikawa, Hiroaki
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.2
    • /
    • pp.149-164
    • /
    • 2021
  • Most of high-rise buildings in Japan*1 are structure with damping systems recently. The design procedure is performance-based design (PBD), which is based on the nonlinear response history procedure (NRHP) using 2 or 3-dimentional frame model. In addition, hysteretic property of steel plates or velocity-dependent property of viscous dampers are common practice for the damping system. However, for the selection of damping system, the easy dynamic analysis of recent date may lead the most of engineers to focus attention on the maximum response only without thinking how it shakes. By nature, the seismic design shall be to figure out the action of inertia forces by complex & dynamic loads including periodic and pulse-like characteristics, what we call seismic ground motion. And it shall be done under the dynamic condition. On the contrary, we engineers engineers have constructed the easy-to-use static loads and devoted ourselves to handle them. The structures with damping system shall be designed considering how the stiffness & damping to be applied to the structures against the inertia forces with the viewpoint of dynamic aspect. In this paper we reconsider the role of damping in vibration and give much thought to the basic of shake with damping from a standpoint of structural design. Then, we present some design examples based on them.

An applied model for steel reinforced concrete columns

  • Lu, Xilin;Zhou, Ying
    • Structural Engineering and Mechanics
    • /
    • v.27 no.6
    • /
    • pp.697-711
    • /
    • 2007
  • Though extensive research has been carried out for the ultimate strength of steel reinforced concrete (SRC) members under static and cyclic load, there was only limited information on the applied analysis models. Modeling of the inelastic response of SRC members can be accomplished by using a microcosmic model. However, generally used microcosmic model, which usually contains a group of parameters, is too complicated to apply in the nonlinear structural computation for large whole buildings. The intent of this paper is to develop an effective modeling approach for the reliable prediction of the inelastic response of SRC columns. Firstly, five SRC columns were tested under cyclic static load and constant axial force. Based on the experimental results, normalized trilinear skeleton curves were then put forward. Theoretical equation of normalizing point (ultimate strength point) was built up according to the load-bearing mechanism of RC columns and verified by the 5 specimens in this test and 14 SRC columns from parallel tests. Since no obvious strength deterioration and pinch effect were observed from the load-displacement curve, hysteresis rule considering only stiffness degradation was proposed through regression analysis. Compared with the experimental results, the applied analysis model is so reasonable to capture the overall cyclic response of SRC columns that it can be easily used in both static and dynamic analysis of the whole SRC structural systems.

Damage detection of railway bridges using operational vibration data: theory and experimental verifications

  • Azim, Md Riasat;Zhang, Haiyang;Gul, Mustafa
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.2
    • /
    • pp.149-166
    • /
    • 2020
  • This paper presents the results of an experimental investigation on a vibration-based damage identification framework for a steel girder type and a truss bridge based on acceleration responses to operational loading. The method relies on sensor clustering-based time-series analysis of the operational acceleration response of the bridge to the passage of a moving vehicle. The results are presented in terms of Damage Features from each sensor, which are obtained by comparing the actual acceleration response from the sensors to the predicted response from the time-series model. The damage in the bridge is detected by observing the change in damage features of the bridge as structural changes occur in the bridge. The relative severity of the damage can also be quantitatively assessed by observing the magnitude of the changes in the damage features. The experimental results show the potential usefulness of the proposed method for future applications on condition assessment of real-life bridge infrastructures.

Dynamic Response Characteristics of the Suspension Bridge Subjected to Near Fault Ground Motions (근거리 지진에 의한 현수교의 동적응답특성)

  • 한성호;이강혁;유병률;방명석;신재철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.484-491
    • /
    • 2004
  • In this study, the effect of the Near Fault Ground Motion which hasn't been considered at the domestic seismic design is demonstrated through the seismic response analysis of suspension bridge. After selecting the typical Near and Far Fault Ground Motion, the response characteristics are analysed by conducting the seismic response analysis about the long period suspension bridge which is expected to suffer the effect of Near Fault Ground Motions more largely. According to the results of this study, the Near Fault Ground Motions affect the suspension bridge more considerably than the Far Fault Ground Motions.

  • PDF

Analytical Study on Effects of Gravity Load on Blast Resistance of Steel Compressive Members (강재압축재의 방폭성능에 대한 중력하중효과의 해석적 연구)

  • Lee, Kyungkoo;Lee, Moon Chang
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.3
    • /
    • pp.273-280
    • /
    • 2015
  • Equivalent Single-Degree-of-Freedom(SDOF) analysis, most used for blast-resistant design, does not consider the effects of gravity load on the performance evaluation of blast resistance of structural members. However, since there exists gravity load on columns and walls of structures, the blast resistance of structural members should be evaluated considering gravity load on them. In this paper, an approach to reflect the gravity load effects on the equivalent SDOF analysis for dynamic blast response of structural members is proposed. For this purpose, the parametric studies using finite element analysis were performed by varying maximum blast load, blast load duration, and gravity load with constant the resistance and natural period of a structural member. The finite element analysis results were compared with the equivalent SDOF analysis results and the blast response of the structure member was estimated by conducting finite element analyses for various gravity loads. Finally, a graphical solution for ductility of a structural member with the variables of blast load, gravity load and structural member properties was developed. The blast response of structural members under gravity load could be estimated reasonably and easily by using this graphical solution.

Structural Strength Analysis due to Rib Thickness of Lower Arm (로워암 리브 두께에 따른 구조 강도 해석)

  • Cho, Jaeung;Han, Moonsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.126-134
    • /
    • 2014
  • This study investigates the structural strength analysis due to rib thickness of lower arm. At structural analysis, model 1 has the most deformation by comparing three models. As most equivalent stress is shown at the part connected with wheel knuckle, the strength becomes weaker in cases of three models. At fatigue analysis, model 1 becomes most unstabilized among three models. Model 3 has most fatigue life and the next model is model 2. The range of maximum harmonic response frequencies becomes 140 to 175Hz in cases of three models. Because the critical frequency at model 3 becomes highest among three models but the stress exceeds yield stress, model 3 becomes most unstabilized at vibration durability. As models 1 and 2 has less than yield stress, these models become stabilized. Model 2 becomes most favorable by comparing three models at structural, fatigue and vibration analyses. This study result can be effectively utilized with the design of lower arm by investigating prevention against damage and its strength durability.

Durability Study on Structural Strength due to the Shape of Excavator Wheel (굴삭기휠의 형상별 구조 강도에 대한 내구성 연구)

  • Cho, Jaeung;Han, Moonsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.6
    • /
    • pp.166-174
    • /
    • 2013
  • This study investigates the strength durability on the results of structural and vibration analysis due to the shape of excavator wheel. As model 2 has the least stress by comparing three models with maximum equivalent stress, model 2 has most durability among three models at static analysis. Maximum equivalent stress is shown at the bottom part contacted with ground and this part on wheel is most affected by load in cases of all models. Safety factor can be decided with the value of 2.3 by considering the yield stress of this model. The range of maximum harmonic response frequencies becomes 6900 to 7000Hz. As model 2 has the least total deformation and equivalent stress at these critical frequencies, model 2 has the most durability at vibration analysis among three models. The structural and vibration analysis results in this study can be effectively utilized with the design of excavator wheel by investigating prevention and durability against its damage.