• Title/Summary/Keyword: structural response analysis

Search Result 2,908, Processing Time 0.03 seconds

An improvement on fuzzy seismic fragility analysis using gene expression programming

  • Ebrahimi, Elaheh;Abdollahzadeh, Gholamreza;Jahani, Ehsan
    • Structural Engineering and Mechanics
    • /
    • v.83 no.5
    • /
    • pp.577-591
    • /
    • 2022
  • This paper develops a comparatively time-efficient methodology for performing seismic fragility analysis of the reinforced concrete (RC) buildings in the presence of uncertainty sources. It aims to appraise the effectiveness of any variation in the material's mechanical properties as epistemic uncertainty, and the record-to-record variation as aleatory uncertainty in structural response. In this respect, the fuzzy set theory, a well-known 𝛼-cut approach, and the Genetic Algorithm (GA) assess the median of collapse fragility curves as a fuzzy response. GA is requisite for searching the maxima and minima of the objective function (median fragility herein) in each membership degree, 𝛼. As this is a complicated and time-consuming process, the authors propose utilizing the Gene Expression Programming-based (GEP-based) equation for reducing the computational analysis time of the case study building significantly. The results indicate that the proposed structural analysis algorithm on the derived GEP model is able to compute the fuzzy median fragility about 33.3% faster, with errors less than 1%.

Seismic Analysis of the Main Control Boards for Nuclear Power Plant (원자력발전소의 Main Control Boards에 대한 내진 해석)

  • Byeon, Hoon-Seok;Lee, Joon-Keun;Kim, Jin-Young
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.498-498
    • /
    • 2001
  • Seismic qualification of the Main Control Boards for nuclear power plants has been performed with the guideline of AS ME Section III. US NRC Reg. Guide and IEEE 344 code. The analysis model of the Main Control Boards is consist of beam. shell and mass element by using the finite element method. and, at the same time. the excitation forces and other operating loads for each model are encompassed with respect to different loading conditions. As the fundamental frequencies of the structure are found to be less than 33Hz. which is the upper frequency limit of the seismic load, the response spectrum analysis using ANSYS is performed in order to combine the modal stresses within the frequency limit. In order to confirm the structural and functional integrity of the major components, modal analysis theory is adopted to derive the required response spectrum at the component locations. As all the combined stresses obtained from the above procedures are less than allowable stresses and no mechanical or electrical failures are found from the seismic testing, it concludes the Main Control Boards is dynamically qualified for seismic conditions. Although the authors had confirmed the structural and functional integrity of both Main Control Boards and all the component, in this paper only the seismic analysis of the Main Control Board is introduced.

  • PDF

Seismic Reliability Analysis of Offshore Wind Turbine Jacket Structure Using Stress Limit State (응력한계상태를 이용한 해상풍력발전기 재킷구조물의 지진신뢰성해석)

  • Lee, Gee-Nam;Kim, Dong-Hyawn
    • Journal of Ocean Engineering and Technology
    • /
    • v.30 no.4
    • /
    • pp.260-267
    • /
    • 2016
  • Considering the effect of dynamic response amplification, a reliability analysis of an offshore wind turbine support structure under an earthquake is presented. A reliability analysis based on the dynamic response requires a large amount of time when using not only a level 3 approach but also level 2 such as a first order reliability method (FORM). Moreover, if a limit state is defined by using the maximum stress at a structural joint where stress concentration occurs, a three-dimensional element should be used in the finite element analysis. This makes the computational load much heavier. To deal with this kind of problem, two techniques are suggested in this paper. One is the application of a quasi-static structural analysis that takes the dynamic amplification effect into account. The other is the use of a stress concentration factor to estimate the maximum local stress. The proposed reliability analysis is performed using a level 2 FORM and verified using a level 3 simulation approach.

Response Calibration for Bridges based on Statistical Quality Control Chart (통계적 품질 관리도에 기초한 교량의 응답 보정)

  • Hwang, Jin Ha;An, Seoung Su;Kim, Ju Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.61-70
    • /
    • 2013
  • This paper presents the response calibration method based on quality control range, which is established from the concept and method of statistical quality control for natural frequency ratio and response ratio. To this end, statistical analysis including descriptive statistics analysis, normality test, ANOVA were performed for response characteristics obtained from loading tests and structural analysis for more than hundred and thirty well-conditioned bridges. Suggested method is based on real structural integrity evaluation case studies and statistical quality control approach, in this respect it is expected to provide scientific criteria and systematic procedure for response calibration and load carrying capacity assessment.

Transient Response Analysis of Linear Dynamic System with Random Properties (확률론적 특성을 갖는 선형 동적계의 과도 응답 해석)

  • 김인학;독고욱
    • Computational Structural Engineering
    • /
    • v.10 no.3
    • /
    • pp.125-131
    • /
    • 1997
  • Most dynamic systems have are known to various random properties in excitation and system parameters. In this paper, a procedure for response analysis is proposed for the linear dynamic system with random properties in both excitation and system parameters. The system parameters and responses with random properties are modeled by perturbation technique, and then response analysis is formulated by probabilistic and vibration theories. And probabilistic FEM is also used for the calculation of mean response which is difficult by the proposed response model. As an applicative example, the transient response is considered for systems of single degree of freedom with random mass and spring constant subjected to stationary white-noise excitation and the results are compared to those of numerical simulation.

  • PDF

Flow and Structural Response Characteristics of a Box-type Artificial Reef (상자형 어초의 흐름 및 구조응답 특성)

  • Kim, Dongha;Woo, Jinho;Na, Won-Bae;Yoon, Han-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.3
    • /
    • pp.113-119
    • /
    • 2014
  • We carried out flow and structural response analysis of a box-type artificial reef (AR), which is made of concrete and structural steel. From the flow analysis, the wake region and drag coefficient were evaluated and accordingly, the structural analysis was performed to evaluate the stress and deformation of the target reef by considering the pressure field obtained from the flow analysis. The concept of wake volume was presented to quantitatively estimate the wake region and its variation according to flow direction and velocity. From the results, it is shown that the flow responses are only sensitive to the flow direction; the structural responses are sensitive to both of the flow velocity and direction although the magnitudes are negligible; and the wake volume became 3.52 times the AR volume with an optimum installation condition ($30^{\circ}$, flow direction) of the target unit.

Structural Analysis and Testing of 1.5kW Class Wind Turbine Blade (1.5kW급 풍력발전기용 블레이드의 구조해석 및 구조시험)

  • Kim, Hong-Kwan;Lee, Jang-Ho;Jang, Se-Myong;Kang, Ki-Weon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.4
    • /
    • pp.51-57
    • /
    • 2010
  • This paper describes the structural design and testing for 1.5kW class wind turbine composite blade. In order to calculate the equivalent material properties rule-of-mixture is applied. Lay-up sequence, ply thickness and ply angle are designed to satisfy the requirements for structural integrity. Structural analysis by using commercial software ABAQUS is performed to assess the static, buckling and vibration response. And to verify the structural analysis and design, the full scale structural test in flapwise direction was performed under single point loading according to loading conditions calculated by the aerodynamic analysis and Case H (Parked wind loading) in IEC 61400-2.

Flow Induced Vibration of Reactor Internals Structure : Analysis and Experiment (원자로 내부구조물의 유체흐름에 의한 진동 - 해석 및 실험)

  • Rhee, Hui-Nam;Choi, Suhn;Kim, Tae-Hyung;Hwang, Jong-Keun;Kim, Jung-Kyu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.201-207
    • /
    • 1995
  • A series of vibration assessment programs has been performed for Yonggwang Nuclear Power Plant Unit 4 (YGN 4) in order to verify the structural integrity of the reactor internals for flow induced vibration prior to its commercial operation. The structural analysis was done to provide the basis for measurement and the theoretical evidence for the structural integrity of the reactor internals. The actual flow induced hydraulic loads and reactor internals vibration response data were measured and recorded during pre-core hot functional testing of the plant. Then, the measured data have been reduced and analyzed, and compared with the analysis results such as the frequency contents, stresses, strains and displacements. It is concluded that the structural analysis methodology performed for vibration response of the reactor internals due to the flow induced vibration is appropriately conservative, and also that the structural integrity of YGN 4 reactor internals to flow induced vibration is acceptable for long term operation.

  • PDF

Reliability-based design optimization using reliability mapping functions

  • Zhao, Weitao;Shi, Xueyan;Tang, Kai
    • Structural Engineering and Mechanics
    • /
    • v.62 no.2
    • /
    • pp.125-138
    • /
    • 2017
  • Reliability-based design optimization (RBDO) is a powerful tool for design optimization when considering probabilistic characteristics of design variables. However, it is often computationally intensive because of the coupling of reliability analysis and cost minimization. In this study, the concept of reliability mapping function is defined based on the relationship between the reliability index obtained by using the mean value first order reliability method and the failure probability obtained by using an improved response surface method. Double-loop involved in the classical RBDO can be converted into single-loop by using the reliability mapping function. Since the computational effort of the mean value first order reliability method is minimal, RBDO by using reliability mapping functions should be highly efficient. Engineering examples are given to demonstrate the efficiency and accuracy of the proposed method. Numerical results indicated that the proposed method has the similar accuracy as Monte Carlo simulation, and it can obviously reduce the computational effort.

Numerical study on the structural response of energy-saving device of ice-class vessel due to impact of ice block

  • Matsui, Sadaoki;Uto, Shotaro;Yamada, Yasuhira;Watanabe, Shinpei
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.367-375
    • /
    • 2018
  • The present paper considers the contact between energy-saving device of ice-class vessel and ice block. The main objective of this study is to clarify the tendency of the ice impact force and the structural response as well as interaction effects of them. The contact analysis is performed by using LS-DYNA finite element code. The main collision scenario is based on Finnish-Swedish ice class rules and a stern duct model is used as an energy-saving device. For the contact force, two modelling approaches are adopted. One is dynamic indentation model of ice block based on the pressure-area curve. The other is numerical material modelling by LS-DYNA. The authors investigated the sensitivity of the structural response against the ice contact pressure, the interaction effect between structure and ice block, and the influence of eccentric collision. The results of these simulations are presented and discussed with respect to structural safety.