• 제목/요약/키워드: structural reaction

검색결과 1,075건 처리시간 0.032초

Mild Traumatic Brain Injury and Subsequent Acute Pulmonary Inflammatory Response

  • Lim, Seung Hyuk;Jung, Harry;Youn, Dong Hyuk;Kim, Tae Yeon;Han, Sung Woo;Kim, Bong Jun;Lee, Jae Jun;Jeon, Jin Pyeong
    • Journal of Korean Neurosurgical Society
    • /
    • 제65권5호
    • /
    • pp.680-687
    • /
    • 2022
  • Objective : The influence of moderate-to-severe traumatic brain injury (TBI) on acute pulmonary injury is well established, but the association between acute pulmonary injury and mild TBI has not been well studied. Here, we evaluated the histological changes and fluctuations in inflammatory markers in the lungs to determine whether an acute pulmonary inflammatory response occurred after mild TBI. Methods : Mouse models of mild TBI (n=24) were induced via open-head injuries using a stereotaxic impactor. The brain and lungs were examined 6, 24, and 72 hours after injury and compared to sham-operated controls (n=24). Fluoro-Jade B staining and Astra blue and hematoxylin staining were performed to assess cerebral neuronal degeneration and pulmonary histological architecture. Quantitative real-time polymerase chain reaction analysis was done to measure inflammatory cytokines. Results : Increased neuronal degeneration and the mRNA expression of interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-10, and transforming growth factor (TGF)-β were observed after mild TBI. The IL-6, TNF-α, and TGF-β levels in mice with mild TBI were significantly different compared to those of sham-operated mice 24 hours after injury, and this was more pronounced at 72 hours. Mild TBI induced acute pulmonary interstitial edema with cell infiltration and alveolar morphological changes. In particular, a significant infiltration of mast cells was observed. Among the inflammatory cytokines, TNF-α was significantly increased in the lungs at 6 hours, but there was no significant difference 24 and 72 hours after injury. Conclusion : Mild TBI induced acute pulmonary interstitial inflammation and alveolar structural changes, which are likely to worsen the patient's prognosis.

Functional characterization and expression analysis of c-type and g-like-type lysozymes in yellowtail clownfish (Amphiprion clarkii)

  • Gaeun Kim;Hanchang Sohn;WKM Omeka;Chaehyeon Lim;Don Anushka Sandaruwan Elvitigala;Jehee Lee
    • Fisheries and Aquatic Sciences
    • /
    • 제26권3호
    • /
    • pp.188-203
    • /
    • 2023
  • Lysozymes are well-known antibacterial enzymes that mainly target the peptidoglycan layer of the bacterial cell wall. Animal lysozymes are mainly categorized as g-type, c-type, and i-type based on protein sequence and structural differences. In this study, c-type (AcLysC) and g-like-type (AcLysG-like) lysozymes from Amphiprion clarkii were characterized in silico via expressional and functional approaches. According to in silico analysis, open reading frames of AcLysC and AcLysG-like were 429 bp and 570 bp, respectively, encoding the corresponding polypeptide chains with 142 and 189 amino acids. Elevated expression levels of AcLysC and AcLysG-like were observed in the liver and the heart tissues, respectively, as evidenced by quantitative real-time polymerase chain reaction assays. AcLysC and AcLysG-like transcript levels were upregulated in gills, head kidney, and blood cells following experimental immune stimulation. Recombinant AcLysC exhibited potent lytic activity against Vibrio anguillarum, whereas recombinant AcLysG-like showed remarkable antibacterial activity against Vibrio harveyi and Streptococcus parauberis, which was further evidenced by scanning electron microscopic imaging of destructed bacterial cell walls. The findings of this study collectively suggest the potential roles of AcLysC and AcLysG-like in host immune defense.

Effects of heat and gamma radiation on the degradation behaviour of fluoroelastomer in a simulated severe accident environment

  • Inyoung Song ;Taehyun Lee ;Kyungha Ryu ;Yong Jin Kim ;Myung Sung Kim ;Jong Won Park;Ji Hyun Kim
    • Nuclear Engineering and Technology
    • /
    • 제54권12호
    • /
    • pp.4514-4521
    • /
    • 2022
  • In this study, the effects of heat and radiation on the degradation behaviour of fluoroelastomer under simulated normal operation and a severe accident environment were investigated using sequential testing of gamma irradiation and thermal degradation. Tensile properties and Shore A hardness were measured, and thermogravimetric analysis was used to evaluate the degradation behaviour of fluoroelastomer. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy were used to characterize the structural changes of the fluoroelastomer. Heat and radiation generated in nuclear power plant break and deform the chemical bonds, and fluoroelastomer exposed to these environments have decreased C-H and functional groups that contain oxygen and double bonds such as C-O, C=O and C=C were generated. These functional groups were formed by auto oxidation by reacting free radicals generated from the cleaved bond with oxygen in the atmosphere. In this auto oxidation reaction, crosslinks were generated where bonded to each other, and the mobility of molecules was decreased, and as a result, the fluoroelastomer was hardened. This hardening behaviour occurred more significantly in the severe accident environment than in the normal operation condition, and it was found that thermal stability decreased with the generation of unstable structures by crosslinking.

포렌식 데이터의 실시간 수집 절차 모델링 (Modeling of Collection Process for Real-time Forensic Data)

  • 김태훈;박남규;최한나;이대윤;안종득;조용환
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권12호
    • /
    • pp.139-145
    • /
    • 2009
  • 본 논문에서는 관리자가시스템 운영과 감사 측면에서 침해사고에 대응하고 사고 발생 즉시 포렌식 데이터를 수집 분석 및 복구할 수 있는 포렌식 데이터의 실시간 수집 절차 모델을 제안한다. 제안한 모델은 기능 요소별로 구별된 7단계 절차를 가지며 추상적이고 관리적인 기존의 포렌식 절차와는 달리, 관리자가 시스템 운영과 감사 측면에서 침해사고에 대응하고, 사고 발생시 포렌식 데이터를 수집 분석 및 복구할수 있는 절차들이 포함되어 있다. 또한 즉각적인 대응이 어려운 경우 기존의 절차와 마찬가지로 종합적이고 조직적인 대응이 가능하도록 대응 전략 체계화 단계를 통한 포렌식 데이터 수집 단계로의 피드백 절차를 둔다.

편경사지에 굴착한 반개착식 천층터널에서 아치슬래브의 거동 (Behavior of arch slab in the shallow tunnel constructed perpendicular to slope by semi-cut-and-cover method)

  • 양재원;이상덕
    • 한국터널지하공간학회 논문집
    • /
    • 제12권2호
    • /
    • pp.157-164
    • /
    • 2010
  • 최근 아치슬래브를 이용한 새로운 반개착식 터널공법이 터널안정성 확보와 건설비용 감소, 환경훼손 최소화를 위해 적용되고 있다. 반개착식 공법은 원지반을 터널 천단아치부 까지만 굴착하고 아치형 구조물을 설치하여 복토한 후에 터널하반을 굴착하는 공법이다. 본 논문에서는 편경사 지역에서 반개착식으로 굴착 할 경우 편경사에 따른 아치슬래브의 거동을 실내모형실험으로 규명하였다. 연구결과, 아치슬래브의 거동은 원지반의 편경사 크기, 굴착심도, 굴착사면의 경사 및 기반암의 위치에 영향을 받는 것으로 나타났다. 아치슬래브의 측력은 전반적으로 압축력이 지배하나 편경사가 커질수록, 저지대에서 부분적으로 인장력이 발생하였다. 아치슬래브의 모멘트는 편경사가 증가할수록 고지대에서는 압축모멘트가 발생하며, 저지대에서는 인장모멘트가 발생하였다. 지점반력은 편경사가 커질수록 고지대에서는 증가하며, 저지대에서는 감소하여 좌우편차가 발생하였다.

트립탄 유도체의 구조적 특성에 관한 이론적 연구 (Theoretical Study on Structural Properties of Triptan Derivatives)

  • 이철재;남기영
    • 문화기술의 융합
    • /
    • 제9권4호
    • /
    • pp.503-508
    • /
    • 2023
  • 트립탄 유도체는 급성 편두통을 치료하는 물질로 크로마토그래피, 전기화학, 분광학 및 모세관 전기영동학 등의 분석법과 관련된 연구가 많이 진행되었다. 최근 분석화학자들의 약물 분석과 생물학적 중요성에 대한 근본적인 문제 해결에 더욱 관심이 깊어지고 있다. 따라서 본 연구에서는 트립탄 유도체의 분자단위 수준의 구조적 특성을 알아보기 위하여 HyperChem8.0의 반경험적 PM3 방법을 이용하여 수마트립탄, 리자트립탄, 나라트립탄 그리고 엘레트립탄의 전체에너지, 밴드갭, 정전포텐셜, 전하량을 계산하여 각 유도체의 분자 구조적 변화에 따른 화학적 특성을 조사하였다. 본 연구의 결과 수마트립탄, 나라트립탄 그리고 엘레트립탄의 경우 황 원자에 결합된 산소와 질소 원자를 중심으로 화학작용이 진행될 것으로 예상된다. 또한, 황원자가 없는 리자트립탄의 경우는 5원헤테로 고리화합물의 17, 19번 질소에서 화학작용이 진행될 것으로 나타났다.

Comprehensive Evaluation System for Post-Metabolic Activity of Potential Thyroid-Disrupting Chemicals

  • Yurim Jang;Ji Hyun Moon;Byung Kwan Jeon;Ho Jin Park;Hong Jin Lee;Do Yup Lee
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권10호
    • /
    • pp.1351-1360
    • /
    • 2023
  • Endocrine-disrupting chemicals (EDCs) are compounds that disturb hormonal homeostasis by binding to receptors. EDCs are metabolized through hepatic enzymes, causing altered transcriptional activities of hormone receptors, and thus necessitating the exploration of the potential endocrine-disrupting activities of EDC-derived metabolites. Accordingly, we have developed an integrative workflow for evaluating the post-metabolic activity of potential hazardous compounds. The system facilitates the identification of metabolites that exert hormonal disruption through the integrative application of an MS/MS similarity network and predictive biotransformation based on known hepatic enzymatic reactions. As proof-of-concept, the transcriptional activities of 13 chemicals were evaluated by applying the in vitro metabolic module (S9 fraction). Identified among the tested chemicals were three thyroid hormone receptor (THR) agonistic compounds that showed increased transcriptional activities after phase I+II reactions (T3, 309.1 ± 17.3%; DITPA, 30.7 ± 1.8%; GC-1, 160.6 ± 8.6% to the corresponding parents). The metabolic profiles of these three compounds showed common biotransformation patterns, particularly in the phase II reactions (glucuronide conjugation, sulfation, GSH conjugation, and amino acid conjugation). Data-dependent exploration based on molecular network analysis of T3 profiles revealed that lipids and lipid-like molecules were the most enriched biotransformants. The subsequent subnetwork analysis proposed 14 additional features, including T4 in addition to 9 metabolized compounds that were annotated by prediction system based on possible hepatic enzymatic reaction. The other 10 THR agonistic negative compounds showed unique biotransformation patterns according to structural commonality, which corresponded to previous in vivo studies. Our evaluation system demonstrated highly predictive and accurate performance in determining the potential thyroid-disrupting activity of EDC-derived metabolites and for proposing novel biotransformants.

Molybdenum-Based Electrocatalysts for Direct Alcohol Fuel Cells: A Critical Review

  • Gaurav Kumar Yogesh;Rungsima Yeetsorn;Waritnan Wanchan;Michael Fowler;Kamlesh Yadav;Pankaj Koinkar
    • Journal of Electrochemical Science and Technology
    • /
    • 제15권1호
    • /
    • pp.67-95
    • /
    • 2024
  • Direct alcohol fuel cells (DAFCs) have gained much attention as promising energy conversion devices due to their ability to utilize alcohol as a fuel source. In this regard, Molybdenum-based electrocatalysts (Mo-ECs) have emerged as a substitution for expensive Pt and Ru-based co-catalyst electrode materials in DAFCs, owing to their unique electrochemical properties useful for alcohol oxidation. The catalytic activity of Mo-ECs displays an increase in alcohol oxidation current density by several folds to 1000-2000 mA mgPt-1, compared to commercial Pt and PtRu catalysts of 10-100 mA mgPt-1. In addition, the methanol oxidation peak and onset potential have been significantly reduced by 100-200 mV and 0.5-0.6 V, respectively. The performance of Mo-ECs in both acidic and alkaline media has shown the potential to significantly reduce the Pt loading. This review aims to provide a comprehensive overview of the bifunctional mechanism involved in the oxidation of alcohols and factors affecting the electrocatalytic oxidation of alcohol, such as synthesis method, structural properties, and catalytic support materials. Furthermore, the challenges and prospects of Mo-ECs for DAFCs anode materials are discussed. This in-depth review serves as valuable insight toward enhancing the performance and efficiency of DAFC by employing Mo-ECs.

Synthesis and Analysis of the Impact of Partial Mercury Replacement with Lead on the Structural and Electrical Properties of the Hg1-xPbxBa2Ca2Cu3O8+δ Superconductor

  • Kareem Ali Jasim;Chaiar Abdeen Zaynel Saleh;Alyaa Hamid Ali Jassim
    • 한국재료학회지
    • /
    • 제34권1호
    • /
    • pp.21-26
    • /
    • 2024
  • In this investigation, samples of the chemical (Hg1-xPbxBa2Ca1.8Mg0.2Cu3O8+δ) were prepared utilizing a solid-state reaction technique with a range of lead concentrations (x = 0.0, 0.05, 0.10, and 0.20). Specimens were pressed at 8 tons per square centimeter and then prepared at 1,138 K in the furnace. The crystalline structure and surface topography of all samples were examined using X-ray diffraction (XRD) and atomic force microscopy (AFM). X-ray diffraction results showed that all of the prepared samples had a tetragonal crystal structure. Also, the results showed that when lead was partially replaced with mercury, an increase in the lead value impacted the phase ratio, and lattice parameter values. The AFM results likewise showed excellent crystalline consistency and remarkable homogeneity during processing. The electrical resistivity was calculated as a function of temperature, and the results showed that all samples had a contagious behavior, as the resistivity decreased with decreasing temperature. The critical temperature was calculated and found to change, from 102, 96, 107, and 119 K, when increasing the lead values in the samples from 0.0 to 0.05, 0.10, and 0.20, respectively.

알파형 반수석고를 활용한 PHC 파일 콘크리트의 역학적 특성 (Mechanical Properties of PHC Pile Concrete using Alpha-type Hemihydrate Gypsum)

  • 김홍섭;신경수;김도겸
    • 한국건설순환자원학회논문집
    • /
    • 제12권1호
    • /
    • pp.25-32
    • /
    • 2024
  • 본 연구에서는 알파형 반수석고를 활용한 PHC 파일 콘크리트의 역학적 특성을 평가하였다. 알파형 반수석고의 치환율이 증가할수록 응결시간이 급격히 빨라졌으며, 특히 20 % 이상 치환 시 급격한 수화반응으로 응결시간이 단축되어 작업 시간 확보가 불가능하였다. 알파형 반수석고의 치환율이 증가할수록 ettringite와 Gypsum 피크가 증가하는 경향을 보였으며, ettringite 피크 증가로 인해 콘크리트의 수축량이 감소하는 것으로 판단된다. 알파형 반수석고 치환율 5~15 %에서는 OPC 대비 압축강도가 증가하거나 동등 수준으로 나타났으나 20 % 치환 시 급격한 응결로 인한 작업성이 저하되어 5~15 % 범위의 사용이 적절하다고 판단된다.