• 제목/요약/키워드: structural reaction

검색결과 1,071건 처리시간 0.026초

Dielectric and Electrical Characteristics of Lead-Free Complex Electronic Material: Ba0.8Ca0.2(Ti0.8Zr0.1Ce0.1)O3

  • Sahu, Manisha;Hajra, Sugato;Choudhary, Ram Naresh Prasad
    • 한국재료학회지
    • /
    • 제29권8호
    • /
    • pp.469-476
    • /
    • 2019
  • A lead-free bulk ceramic having a chemical formula $Ba_{0.8}Ca_{0.2}(Ti_{0.8}Zr_{0.1}Ce_{0.1})O_3$ (further termed as BCTZCO) is synthesized using mixed oxide route. The structural, dielectric, impedance, and conductivity properties, as well as the modulus of the synthesized sample are discussed in the present work. Analysis of X-ray diffraction data obtained at room temperature reveals the existence of some impurity phases. The natural surface morphology shows close packing of grains with few voids. Attempts have been made to study the (a) effect of microstructures containing grains, grain boundaries, and electrodes on impedance and capacitive characteristics, (b) relationship between properties and crystal structure, and (c) nature of the relaxation mechanism of the prepared samples. The relationship between the structure and physical properties is established. The frequency and temperature dependence of the dielectric properties reveal that this complex system has a high dielectric constant and low tangent loss. An analysis of impedance and related parameters illuminates the contributions of grains. The activation energy is determined for only the high temperature region in the temperature dependent AC conductivity graph. Deviation from the Debye behavior is seen in the Nyquist plot at different temperatures. The relaxation mechanism and the electrical transport properties in the sample are investigated with the help of various spectroscopic (i.e., dielectric, modulus, and impedance) techniques. This lead free sample will serve as a base for device engineering.

NiCrAl 합금 폼의 안정성 향상을 위해 코팅된 Nb-doped TiO2의 효과 (The Effect of Nb-doped TiO2 Coating for Improving Stability of NiCrAl Alloy Foam)

  • 조현기;신동요;안효진
    • 한국재료학회지
    • /
    • 제29권5호
    • /
    • pp.328-335
    • /
    • 2019
  • Nb-doped $TiO_2$(NTO) coated NiCrAl alloy foam for hydrogen production is prepared using ultrasonic spray pyrolysis deposition(USPD) method. To optimize the size and distribution of NTO particles based on good physical and chemical stability, we synthesize particles by adjusting the weight ratio of the Nb precursor solution(5 wt%, 10 wt% and 15 wt%). The morphological, chemical bonding, and structural properties of the NTO coated NiCrAl alloy foam are investigated by X-ray diffraction(XRD), X-ray photo-electron spectroscopy(XPS), and Field-Emission Scanning Electron Microscopy(FESEM). As a result, the samples of controlled Nb weight ratio exhibit a common diffraction pattern at ${\sim}25.3^{\circ}$, corresponding to the(101) plane, and have chemical bonding(O-Nb=O) at 534 eV. The NTO particles with the optimum weight ratio of N (10 wt%) show a uniform distribution with a size of ~18.2-21.0 nm. In addition, they exhibit the highest corrosion resistance even in the electrochemical stability estimation. As a result, the introduction of NTO coated NiCrAl alloy foam by USPD improves the chemical stability of the NiCrAl alloy foam by protecting the direct electrochemical reaction between the foam and the electrolyte. Thus, the optimized NTO coating can be proposed for excellent protection of NiCrAl alloy foam for hydrocarbon-based steam methane reforming(SMR).

나무의 성장원리를 응용한 건축 디자인에 관한 연구 (Architectural Design Related to the Growth Principles of Tree)

  • 김태영
    • 문화기술의 융합
    • /
    • 제7권1호
    • /
    • pp.49-57
    • /
    • 2021
  • 본 연구는 자연환경 속에서 스스로 성장하는 나무의 시스템을 통하여, 건축물에 있어서도 스스로 에너지를 생산할 수 있는 방법을 모색하고자 한 것으로, 나무의 구조, 순환 및 환경반응 시스템으로 구분하여 실 사례와 문헌중심으로 살펴본 것이다. 1) 나무의 구조는 지상계와 뿌리조직으로 나뉘며, 가압된 세포막들로 강성을 유지한다. 지상계인 줄기와 크라운에 의한 풍력의 저항은 건축물의 내진구조원리에, 측면 뿌리의 판형 버트레스는 수평트러스 및 현수교에 적용될 수 있다. 또한 다세포의 블록들은 공기막 구조의 원리에 해당된다. 2) 나무의 순환시스템에 있어서, 나뭇잎의 미세한 기공을 통한 증산작용은 많은 양의 열 방출로 효과적인 냉각 수단이 될 수 있어, 건축물의 냉방에 직접 도입할 수 있다. 또한 증산 작용은 물의 양수와 급수, 태양 그늘을 이용한 창문의 자동 개폐 등에도 적용될 수 있다. 3) 나무의 잎과 꽃에서 읽어낼 수 있는 환경변화에 따른 반응 시스템은 새로운 감지기술과 재료의 사용을 통하여 건축물의 지붕 및 외피디자인에 적용될 수 있다.

SOFC의 세라믹 음극물질로서 Y0.08Sr0.92Fe0.3Ti0.7O3의 합성 및 물성 평가 (Synthesis and Properties of Y0.08Sr0.92Fe0.3Ti0.7O3 as Ceramic Anode for SOFC)

  • Lee, Tae-Hee;Jeon, Sang-Yun;Im, Ha-Ni;Song, Sung-Ju
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제7권1호
    • /
    • pp.161-165
    • /
    • 2021
  • In general, SOFCs mainly use Ni-YSZ cermet, a mixture of Ni and YSZ, as an anode material, which is stable in a high-temperature reducing atmosphere. However, when SOFCs have operated at a high temperature for a long time, the structural change of Ni occurs and it results in the problem of reducing durability and efficiency. Accordingly, a development of a new anode material that can replace existing nickel and exhibits similar performance is in progress. In this study, SrTiO3, which is a perovskite-based mixed conductor and one of the candidate materials, was used. In order to increase the electrical conduction properties, Y0.08Sr0.92Fe0.3Ti0.7O3, doped with 0.08 mol of Y3+ in Sr-site and 0.03 mol of transition metal Fe3+ in Ti-site, was synthesized and its chemical diffusion coefficient and reaction constant were measured. Its electrical conductivity changes were also observed while changing the oxygen partial pressure at a constant temperature. The performance as a candidate electrode material was verified by predicting the defect area through the electrical conductivity pattern according to the oxygen partial pressure.

활성기법을 통한 풍화된 장석의 반응성 개선 특성 (Reactivity Improvement Characteristics of Weathered Feldspar through Activation Technique)

  • 조진우
    • 한국지반신소재학회논문집
    • /
    • 제20권4호
    • /
    • pp.33-41
    • /
    • 2021
  • 장석은 석영과 더불어 국내에서 산출빈도가 가장 높은 광물이나 유리, 도료 등의 제조에 제한적인 이용을 제외하면 물질적 특성과 용도 개발에 대한 연구는 거의 이루어지지 않아 잠재적 가치가 매우 낮게 평가되고 있다. 본 논문에서는 다공성 구조를 특징으로 하는 장석의 재료특성과 열적, 기계적, 화학적, 경량화 활성기법을 적용하여 반응성 개선 특성을 분석하였다. 풍화된 장석의 표면에서 관찰되는 공동의 구조적 특징을 살펴보면 공동들의 배열이 불규칙하게 분포하고 있으며, 공동끼리는 서로 연결되어 있다. 이러한 풍화된 장석의 표면에서 관찰되는 비정형의 연결된 공동으로 인하여 풍화된 장석은 반응면적이 확대되며 시멘트와의 결합재료로서 반응성이 높은 포졸란 재료 역할을 하는 것으로 판단된다. 다공성 장석의 기능성을 향상시키기 위하여 열적, 기계적, 화학적 활성기법을 적용한 결과 양이온교환능력, 밀도, 일축압축강도 특성이 개선되었다. 이러한 다공성 특성에 의하여 풍화된 장석은 물리·화학적 특성이 우수한 친환경 건설재료로 활용이 가능할 것으로 판단된다.

토양 건조 및 침수처리가 박태기나무의 광계 II 활성에 미치는 영향 (Effects of Soil Drought and Waterlogging on Photosystem II Activities in Cercis Bunge)

  • 이경철;이의열;윤경규;권영휴;한상균
    • 현장농수산연구지
    • /
    • 제22권1호
    • /
    • pp.35-42
    • /
    • 2020
  • This study was conducted to investigate the photosystem II activities of Cercis chinensis by soil water condition. Drought stress was induced by withholding water and waterlogging treatments was immerging the pots for 15 days. Results showed that the relative activities per reaction center such as ABS/RC, TRo/RC and Dio/RC were significantly increased compared with the control group after 12 days in waterlogging treatments. Particularly, Dio/RC increased substantially under waterlogging stress, indicating that excessive energy was consumed by heat dissipation. Furthermore, the performance index on absorption basis(PIabs) and responses to structural and functional PS II(SFIabs) were dramatically decreased after 15 days in both the drought and waterlogging treatments, which reflects the relative reduction state of the photosystem II. These results of chlorophyll a fluorescence by OKJIP analysis show that the sensitive changes photosystem II activity. Thus, on the basis of our results that Cercis chinensis was exhibited a strong reduction of photosynthetic activity to waterlogging stress, and OKJIP parameters such as ABS/RC, DIo/RC, PIabs and SFIabs could be useful indicator to monitor the physiological states of Cercis chinensis under soil water condition.

Validation of the neutron lead transport for fusion applications

  • Schulc, Martin;Kostal, Michal;Novak, Evzen;Czakoj, Tomas;Simon, Jan
    • Nuclear Engineering and Technology
    • /
    • 제54권3호
    • /
    • pp.959-964
    • /
    • 2022
  • Lead is an important material, both for fusion or fission reactors. The cross sections of natural lead should be validated because lead is a main component of lithium-lead modules suggested for fusion power plants and it directly affects the crucial variable, tritium breeding ratio. The presented study discusses a validation of the lead transport libraries by dint of the activation of carefully selected activation samples. The high emission standard 252Cf neutron source was used as a neutron source for the presented validation experiment. In the irradiation setup, the samples were placed behind 5 and 10 cm of the lead material. Samples were measured using a gamma spectrometry to infer the reaction rate and compared with MCNP6 calculations using ENDF/B-VIII.0 lead cross sections. The experiment used validated IRDFF-II dosimetric reactions to validate lead cross sections, namely 197Au(n, 2n)196Au, 58Ni(n,p)58Co, 93Nb(n, 2n)92mNb, 115In(n,n')115mIn, 115In(n,γ)116mIn, 197Au(n,γ)198Au and 63Cu(n,γ)64Cu reactions. The threshold reactions agree reasonably with calculations; however, the experimental data suggests a higher thermal neutron flux behind lead bricks. The paper also suggests 252Cf isotropic source as a valuable tool for validation of some cross-sections important for fusion applications, i.e. reactions on structural materials, e.g. Cu, Pb, etc.

Mild Traumatic Brain Injury and Subsequent Acute Pulmonary Inflammatory Response

  • Lim, Seung Hyuk;Jung, Harry;Youn, Dong Hyuk;Kim, Tae Yeon;Han, Sung Woo;Kim, Bong Jun;Lee, Jae Jun;Jeon, Jin Pyeong
    • Journal of Korean Neurosurgical Society
    • /
    • 제65권5호
    • /
    • pp.680-687
    • /
    • 2022
  • Objective : The influence of moderate-to-severe traumatic brain injury (TBI) on acute pulmonary injury is well established, but the association between acute pulmonary injury and mild TBI has not been well studied. Here, we evaluated the histological changes and fluctuations in inflammatory markers in the lungs to determine whether an acute pulmonary inflammatory response occurred after mild TBI. Methods : Mouse models of mild TBI (n=24) were induced via open-head injuries using a stereotaxic impactor. The brain and lungs were examined 6, 24, and 72 hours after injury and compared to sham-operated controls (n=24). Fluoro-Jade B staining and Astra blue and hematoxylin staining were performed to assess cerebral neuronal degeneration and pulmonary histological architecture. Quantitative real-time polymerase chain reaction analysis was done to measure inflammatory cytokines. Results : Increased neuronal degeneration and the mRNA expression of interleukin (IL)-6, tumor necrosis factor (TNF)-α, IL-10, and transforming growth factor (TGF)-β were observed after mild TBI. The IL-6, TNF-α, and TGF-β levels in mice with mild TBI were significantly different compared to those of sham-operated mice 24 hours after injury, and this was more pronounced at 72 hours. Mild TBI induced acute pulmonary interstitial edema with cell infiltration and alveolar morphological changes. In particular, a significant infiltration of mast cells was observed. Among the inflammatory cytokines, TNF-α was significantly increased in the lungs at 6 hours, but there was no significant difference 24 and 72 hours after injury. Conclusion : Mild TBI induced acute pulmonary interstitial inflammation and alveolar structural changes, which are likely to worsen the patient's prognosis.

Functional characterization and expression analysis of c-type and g-like-type lysozymes in yellowtail clownfish (Amphiprion clarkii)

  • Gaeun Kim;Hanchang Sohn;WKM Omeka;Chaehyeon Lim;Don Anushka Sandaruwan Elvitigala;Jehee Lee
    • Fisheries and Aquatic Sciences
    • /
    • 제26권3호
    • /
    • pp.188-203
    • /
    • 2023
  • Lysozymes are well-known antibacterial enzymes that mainly target the peptidoglycan layer of the bacterial cell wall. Animal lysozymes are mainly categorized as g-type, c-type, and i-type based on protein sequence and structural differences. In this study, c-type (AcLysC) and g-like-type (AcLysG-like) lysozymes from Amphiprion clarkii were characterized in silico via expressional and functional approaches. According to in silico analysis, open reading frames of AcLysC and AcLysG-like were 429 bp and 570 bp, respectively, encoding the corresponding polypeptide chains with 142 and 189 amino acids. Elevated expression levels of AcLysC and AcLysG-like were observed in the liver and the heart tissues, respectively, as evidenced by quantitative real-time polymerase chain reaction assays. AcLysC and AcLysG-like transcript levels were upregulated in gills, head kidney, and blood cells following experimental immune stimulation. Recombinant AcLysC exhibited potent lytic activity against Vibrio anguillarum, whereas recombinant AcLysG-like showed remarkable antibacterial activity against Vibrio harveyi and Streptococcus parauberis, which was further evidenced by scanning electron microscopic imaging of destructed bacterial cell walls. The findings of this study collectively suggest the potential roles of AcLysC and AcLysG-like in host immune defense.

Effects of heat and gamma radiation on the degradation behaviour of fluoroelastomer in a simulated severe accident environment

  • Inyoung Song ;Taehyun Lee ;Kyungha Ryu ;Yong Jin Kim ;Myung Sung Kim ;Jong Won Park;Ji Hyun Kim
    • Nuclear Engineering and Technology
    • /
    • 제54권12호
    • /
    • pp.4514-4521
    • /
    • 2022
  • In this study, the effects of heat and radiation on the degradation behaviour of fluoroelastomer under simulated normal operation and a severe accident environment were investigated using sequential testing of gamma irradiation and thermal degradation. Tensile properties and Shore A hardness were measured, and thermogravimetric analysis was used to evaluate the degradation behaviour of fluoroelastomer. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy were used to characterize the structural changes of the fluoroelastomer. Heat and radiation generated in nuclear power plant break and deform the chemical bonds, and fluoroelastomer exposed to these environments have decreased C-H and functional groups that contain oxygen and double bonds such as C-O, C=O and C=C were generated. These functional groups were formed by auto oxidation by reacting free radicals generated from the cleaved bond with oxygen in the atmosphere. In this auto oxidation reaction, crosslinks were generated where bonded to each other, and the mobility of molecules was decreased, and as a result, the fluoroelastomer was hardened. This hardening behaviour occurred more significantly in the severe accident environment than in the normal operation condition, and it was found that thermal stability decreased with the generation of unstable structures by crosslinking.