• Title/Summary/Keyword: structural reaction

Search Result 1,070, Processing Time 0.036 seconds

Identification of Load Carrying and Vibration Characteristics of Oil-Free Foil Journal Bearing Structures for High Speed Motors (고속 전동기용 무급유 포일 저널 베어링 구조체의 하중지지 및 진동 특성 규명)

  • Baek, Doo San;Hwang, Sung Ho;Kim, Tae Ho
    • Tribology and Lubricants
    • /
    • v.37 no.6
    • /
    • pp.261-272
    • /
    • 2021
  • This study investigates the structural characteristics of oil-free, gas beam foil journal bearings (GBFJBs) for use in high speed motors. Mathematical modeling was carried out, and reaction force modeling for static load was performed to predict the structural characteristics of the GBFJB. Mathematical modeling and reaction force modeling for static load are performed to predict the structural characteristics of GBFJBs. The reaction force of the test bearing against static loads was measured during experiments and compared with the predicted results. The measured experimental data reveal the nonlinear stiffness characteristics of the GBFJB against varying displacement and agree well with the predictions. Dynamic load tests using an exciter allow to identify the vibration characteristics of the GBFJB. Test results show that the vibration displacement, dynamic force, and acceleration measured on the test bearing are most dominant at the applied dynamic load (synchronization) frequency. Futhermore, the test results show that the hysteresis area recorded during the dynamic tests increases with the excitation amplitude and frequency, and that the beam stick phenomena occurr at high excitation frequencies. The single degree of freedom (DOF) vibration model aids to identify the stiffness and damping coefficient of the GBFJB, which decrease as the excitation frequency increases.

Seismic Evaluation of Supporting Reactions for the Bridge with Various Curvatures and Skew Angles (지진하중 하에서 교량 곡률과 사각 크기에 따른 받침부의 반력 검토)

  • Park, Seong-Ryel;Kim, Yun-Tae;Kim, Sang-Chel
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.67-73
    • /
    • 2017
  • This study has addressed to evaluate the effects of radius of curvature and skew angle on the negative reaction in a plate girder bridge with LRB (Lead Rubber Bearing) supports. As analytical parameters, various radius of curvatures and skew angles were selected and two seismic loads of El-Centro and artificial earthquakes were applied to the bridge in the longitudinal and transverse directions. As results of 3D analysis, the possibility of negative reaction is shown at the part of acute angle and inner side of the curved bridge, and becomes increased when seismic load is applied in the transverse direction. In addition, the occurrence of negative reaction is found to be increased as both radius of curvature and skew angle decrease, which means that curved bridge has higher possibility of negative reaction than straight one. Conclusively, all of earthquake wave, gradient, radius of curvature and skew angle should be considered together to investigate the possibility of negative reaction at the bridge support subject to seismic load.

The first insight into the structure of the Photosystem II reaction centre complex at $6{\AA}$ resolution determined by electron crystallography

  • Rhee, Kyong-Hi
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1999.08a
    • /
    • pp.83-90
    • /
    • 1999
  • Electron crystallography of two-dimensional crystalsand electron cryo-microscopy is becoming an established method for determining the structure and function of a variety of membrane proteins that are providing difficult to crystallize in three dimension. In this study this technique has been used to investigate the structure of a ~160 kDa reaction centre sub-core complex of photosystem II. Photosystem II is a photosynthetic membrane protein consisting of more than 25 subunits. It uses solar energy to split water releasing molecular oxygen into the atmosphere and creates electrochemical potential across the thylakoid membrane, which is eventually utilized to generate ATP and NADPH. Images were taken using Philips CM200 field emission gun electron microscope with an acceleration voltage of 200kW at liquid nitrogen temperature. In total, 79 images recorded dat tilt angles ranging from 0 to 67 degree yielded amplitudes and phases for a three-dimensional map with an in-plant resolution of 6$\AA$ and 11.4$\AA$ in the third dimension shows at least 23 transmembrane helices resolved in a monomeric complex, of which 18 were able to be assigned to the D1, D2, CP47 , and cytochrome b559 alfa beta-subunits with their associated pigments that ae active in electron transport (Rhee, 1998, Ph.D.thesis). The D1/D2 heterodimer is located in the central position within the complex and its helical scalffold is remarkably similar to that of the reaction centres not only in purple bacteria but also in plant photosystem I (PSI) , indicating a common evoluationary origin of all types of reaction centre in photosynthetic organism known today 9RHee et al. 1998). The structural homology is now extended to the inner antenna subunit, ascribed to CP47 in our map, where the 6 transmembrane helices show a striking structural similarity to the corresponding helices of the PSI reaction centre proteins. The overall arrangement of the chlorophylls in the D1 /D2 heterodimer, and in particular the distance between the central pair, is ocnsistent with the weak exciton coupling of P680 that distinguishes this reaction centre from bacterial counterpart. The map in most progress towards high resolution structure will be presented and discussed.

  • PDF

Structural Analysis and Safety Assessment for Constricted Bridges (협착교량의 구조해석 및 안전성 평가)

  • Jeong, Jae-Hun;Kim, Moon-Ok;Choi, Hyun-Ho;Kim, Jang-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.33-38
    • /
    • 2022
  • As the intense heat continues, many cases of highway pavement blow up and bridge expansion joints damages have been inspected. Especially, Expansion joint closure of bridges is an important problem that can threat the safety of the bridge structure or reduce long-term durability. This paper proposed a structural analysis method for bridges having expansion joint closure and structural analysis was performed to verify the effects according to bridge types. Analysis bridges were divided into four types: concrete and steel bridges, shallow and piled foundations. To induce the situation of abutments and bridge decks are jammed, the following loads were additionally considered; lateral flow pressure, pavement expansion by alkali-aggregate reaction, creep settlement of backfill. The structural analysis method was verified by comparing the structural analysis results with the actually measured joint gap data. In addition, behavioral analysis due to joint closure was conducted to confirm the change in safety ratio by type of superstructure as the axial force increased.

Enzyme-Catalyzed Henry Reaction in Choline Chloride-Based Deep Eutectic Solvents

  • Tian, Xuemei;Zhang, Suoqin;Zheng, Liangyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.1
    • /
    • pp.80-88
    • /
    • 2016
  • The enzyme-catalyzed Henry reaction was realized using deep eutectic solvents (DESs) as a reaction medium. The lipase from Aspergillus niger (lipase AS) showed excellent catalytic activity toward the substrates aromatic aldehydes and nitromethane in choline chloride:glycerol at a molar ratio of 1:2. Addition of 30 vol% water to DES further improved the lipase activity and inhibited DES-catalyzed transformation. A final yield of 92.2% for the lipase AS-catalyzed Henry reaction was achieved under optimized reaction conditions in only 4 h. In addition, the lipase AS activity was improved by approximately 3-fold in a DES-water mixture compared with that in pure water, which produced a final yield of only 33.4%. Structural studies with fluorescence spectroscopy showed that the established strong hydrogen bonds between DES and water may be the main driving force that affects the spatial conformation of the enzyme, leading to a change in lipase activity. The methodology was also extended to the aza-Henry reaction, which easily occurred in contrast to that in pure water. The enantioselectivity of both Henry and aza-Henry reactions was not found. However, the results are still remarkable, as we report the first use of DES as a reaction medium in a lipase-catalyzed Henry reaction.

Review of Microbially Mediated Smectite-illite Reaction (생지화학적 스멕타이트-일라이트 반응에 관한 고찰)

  • Kim, Jin-Wook
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.395-401
    • /
    • 2009
  • The smectite-illite (SI) reaction is a ubiquitous process in siliciclastic sedimentary environments. For the last 4 decades the importance of smectite to illite (S-I) reaction was described in research papers and reports, as the degree of the (S-I) reaction, termed "smectite illitization", is linked to the exploration of hydrocarbons, and geochemical/petrophysical indicators. The S-I transformation has been thought that the reaction, explained either by layer-by-layer mechanism in the solid state or dissolution/reprecipitation process, was entirely abiotic and to require burial, heat, and time to proceed, however few studies have taken into account the bacterial activity. Recent laboratory studies showed evidence suggesting that the structural ferric iron (Fe(III)) in clay minerals can be reduced by microbial activity and the role of microorganisms is to link organic matter oxidation to metal reduction, resulting in the S-I transformation. In abiotic systems, elevated temperatures are typically used in laboratory experiments to accelerate the smectite to illite reaction in order to compensate for a long geological time in nature. However, in biotic systems, bacteria may catalyze the reaction and elevated temperature or prolonged time may not be necessary. Despite the important role of microbe in S-I reaction, factors that control the reaction mechanism are not clearly addressed yet. This paper, therefore, overviews the current status of microbially mediated smectite-to-illite reaction studies and characterization techniques.

High Catalytic Activity and Recyclability of Graphene Oxide Based Palladium Nanocomposites in Sonogashira Reaction

  • Kim, Bo Hyun;Park, Joon B.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.139.1-139.1
    • /
    • 2013
  • Graphene and graphene oxide (GO) have been modified with palladium nanoparticles (Pd NPs) to develop high performance catalysts for the Sonogashira cross coupling reaction. To understand catalytic performance of Pd NPs on graphene (Pd/G) and Pd NPs on GO (Pd/GO), we monitored their morphological and electronic structural changes before/after Sonogashira reaction using FT-IR, XRD, XPS, and XAFS. Here, we demonstrate that both Pd/G and Pd/GO show high catalytic efficiency toward the Sonogashira reaction, but only Pd/GO revealed excellent recyclability. The remarkable catalytic efficiency of both catalysts is attributed to the high degree of the Pd NP dispersions on supports and thus smaller Pd NPs can provide highly reactive low coordinated Pd atoms. However, we attributed the excellent recyclability of Pd/GO to the presence of oxygen functionalities on GO, which can provide nucleation sites for the detached Pd atoms during the Sonogashira reaction and prevent agglomeration of the Pd NPs since the oxygen functional groups are very reactive to mobile Pd adatoms.

  • PDF

Reaction Bonded Si3N4 from Si-Polysilazane Mixture (규소 고분자 복합체를 이용한 반응소결 질화규소)

  • Hong, Sung-Jin;Ahn, Hyo-Chang;Kim, Deug-Joong
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.6
    • /
    • pp.572-577
    • /
    • 2010
  • Reaction-bonded $Si_3N_4$ has cost-reduction merit because inexpensive silicon powder was used as a start material. But its density was not so high enough to be used for structural materials. So the sintered reaction-bonded $Si_3N_4$techniques were developed to solve the low density problem. In this study the sintered reaction-bonded $Si_3N_4$ manufacturing method by using polymer precursor which recently attained significant interest owing to the good shaping and processing ability was proposed. The formations, properties of reaction-bonded $Si_3N_4$ from silicon and polysilazane mixture were investigated. High density reaction-bonded $Si_3N_4$ was manufactured from silicon and silicon-containing preceramic polymers and post-sintering technique. The mixtures of silicon powder and polysilazane were prepared and reaction sintered in $N_2$ atmosphere at $1350^{\circ}C$ and post-sintered at 1600~$1950^{\circ}C$. Density and phase were analyzed and correlated to the resulting material properties.

Relationship between Structural Stability and Crystallinity in Layered Manganese Oxide (층상구조 망간산화물에서의 구조적 안정도와 결정성과의 관계)

  • Hwang, Seong-Ju
    • Journal of the Korean Chemical Society
    • /
    • v.48 no.1
    • /
    • pp.46-52
    • /
    • 2004
  • The effect of crystallinity on the structural stability of layered manganese oxide has been systematically investigated. While well-crystalline manganate was prepared by solid-state reaction-ion exchange method, nanocrystalline one was obtained by Chimie-Douce reaction at room temperature. According to micro-Raman and Mn K-edge X-ray absorption spectroscopic results, manganese ions in both the manganese oxides are stabilized in the octahedral sites of the layered lattice consisting of edge-shared MnO6 octahedra. The differential potential plot clarifies that the layered structure of nanocrystalline material is well maintained during electrochemical cycling, in contrast to the well-crystalline homologue. From the micro-Raman results, it was found that delithiation-relithiation process for well-crystalline material gives rise to the structural transition from layered to spinel-type structure. On the basis of the present experimental findings, it can be concluded that nanocrystalline nature plays an important role in enhancing the structural stability of layered manganese oxides.