• Title/Summary/Keyword: structural rating

Search Result 161, Processing Time 0.033 seconds

Textures and Sensible Images on Structural Properties of Washable Wool and Normal Wool Knit Fabrics (Part II) -Focus on Preferences- (워셔블 울과 노멀 울편성물의 구성특성에 따른 질감 및 감성이미지 (제2보) -구성특성에 따른 선호도를 중심으로-)

  • Kim, Hyun-Ah;Ryu, Hyo-Seon
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.36 no.5
    • /
    • pp.501-511
    • /
    • 2012
  • This study examines the effect of structural properties of F/W wool knit fabrics for woman's knitwear on the preferences for textile designing through analyzing the relationship among the structural properties, mechanical properties, objective hand measurements, and preferences. The 'knit structure' was determined to be the most important parameter in rating preferences, apart from the 'preference for cardigans'. Consumers preferred washable wool to normal wool when comparing a normal wool knit with a washable wool knit on a 'knit structure' factor. Preferred structural properties showed a similar tendency 'preference for fabric' and the 'preference for cardigans', 'preference for sweaters' and 'preference for vests'. The 'sophisticated/feminine' factor showed a correlation with 'fabric preference' and the texture and sensible images had a similar effect on fabric preferences. In the relationship between objective hand measurements and fabric preferences, the KOSHI value had a negative coefficient and the THV value had a positive correlation with fabric preferences. In conclusion, we found a consumer preference for more flexible fabrics.

Damage Assessment According to Damage Types and Influential Factors of Stone Pagoda Structure (석탑문화재 손상 유형 및 영향 요인에 따른 손상도 평가)

  • Kim, Ho-Soo;Hong, Souk-il;Jeon, Gun-Woo;Kim, Derk-Moon;Park, Chan-Min
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.2
    • /
    • pp.87-97
    • /
    • 2018
  • Stone pagoda structures have continued to be aged due to the combination of various damage factors. However, some studies on nonstructural damage have been carried out, but assessment studies on structural damage have not been done in various ways. Therefore, in this study, structural and nonstructural influencing factors according to the damage types are classified and the damage assessment according to the structural influencing factors affecting the behavior of the stone pagoda structure is performed. In addition, the damage rating classification criteria for each type of structural damages or damage locations are presented, and the damage index is calculated by providing the criteria for the classification of damage according to the degree of damage to which the damage is caused. Therefore, this study can evaluate quantitatively the damage status of stone pagoda structures.

Evaluation of Structural Safety of Electro-Mechanical Linear Actuator and Load Simulator with Plate Spring

  • Kim, Dong-Hyeop;Kim, Young-Cheol;Kim, Sang-Woo;Lee, Jong Whan
    • Journal of Aerospace System Engineering
    • /
    • v.14 no.6
    • /
    • pp.18-25
    • /
    • 2020
  • This study investigated the structural behaviors and safety of an electro-mechanical linear actuator and a load simulator with a plate spring. The material and dimensions of the plate spring were determined by theoretically calculating the stress and torsional angle for the rating load of the actuator. Thereafter, a flexible multibody dynamics (FMBD) analysis was conducted on the linear actuator and load simulator to confirm the performance of the load simulator and acquire the reaction forces acting on the actuator and simulator. The structural safety of the linear actuator and load simulator was evaluated via finite element analysis using the aforementioned reaction forces. Consequently, the proposed linear actuator and load simulator were determined to be structurally safe; however, the safety factors for the actuation rod and the housing on the actuator were excessively high. Therefore, the weight and cost must be reduced to improve their design parameters in the future.

Performance Improvement of Overpass Bridge by Weight Reduction (고가교 경량화에 따른 성능개선)

  • Kim, Sung Bae;Nam, Sang Hyeok;Kim, Jang-Ho Jay
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.2
    • /
    • pp.51-60
    • /
    • 2011
  • In this study, structural safety capacity analysis of the overpass railway bridge between Konkuk Univ. and Guui station railroad has been performed. The overpass is expected to have suffered durability reduction by deterioration. The weight reduction of the overpass has been implemented to prevent further durability reduction and to improve performance capacity. To reduce the weight, 3 procedures of replacing concrete soundproofing wall to light-weight soundproofing wall, replacing gravel ballast to concrete ballast, and reducing the weight of trough have been performed. The analysis of static/dynamic behaviors and improved capacity of the light-weighted overpass bridge has been performed. The structural safety verification of the improved structure has been implemented by using rating factors of load carrying capacity of PSC I girder. The results have shown that the deflection has been reduced by 2.6mm and tensile strength has been improved by 1.07MPa, which indicate that the structural capacity has effectively been improved. Also, the natural frequency has improved by approximately 30% where vibration reduction and dynamic behavior improvement have been achieved. Moreover, in the rating factor evaluation based on analysis and test results, an improvement from 1.82 to 1.93 has been observed. Therefore, weight reduction method for the overpass is effective considering overall results.

Analysis of Structural Safety for Rebar Exposure and Corrosion in PSC I-Girder Bridge Slab (PSC I형 교량 바닥판의 철근노출 및 부식에 대한 구조적 안전성 분석)

  • Han, Manseok;Park, Ju-Hyun;Lee, Jong-Han;Min, Jiyoung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.67-74
    • /
    • 2021
  • This paper evaluated the structural safety of an aging PSC I-girder bridge with rebar corrosion in the deck. The geometry and rebar of the bridge were designed based on an actual PSC I-girder bridge, and the numerical analysis was performed considering the crack of concrete and yielding of steel rebar. According to the evaluation criteria of Korea Infrastructure Safety and Technology Corporation, this study defined two criteria of rebar exposure and corrosion rates to construct a total of 32 corrosion scenarios. Rebar exposure was defined as the exposure of tensile rebars in the bridge deck due to the removal of cover concrete. The results of the analysis showed that the safety and rating factors of the bridge decreased with increasing rebar exposure and corrosion rates. For the rebar corrosion rate more than 50%, the safety grade of the bridge should be carefully evaluated for all the rebar exposure rate. When the rebar corrosion rate exceeds 57%, the bridge was evaluated as E grade regardless of rebar exposure rate. A correlation analysis for a 2% of rebar exposure rate found that the bridge was evaluated as A grade up to 55.8% corrosion rate, C grade up to 56.9%, D grade up to 58.5%, and E grade for corrosion rate greater than 58.5%. This study indicates the necessity of a quantitative evaluation of rebar corrosion for evaluating the structural safety of aging bridges.

Noise Lowering for a Large Variable Speed Range Use Permanent Magnet Motor by Frequence Shift and Structural Response Evaluation of Electromagnetic Forces

  • Arata, Masanori;Takahashi, Norio;Fujita, Masafumi;Mochizuki, Motoyasu;Araki, Takashi;Hanai, Takashi
    • Journal of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.67-74
    • /
    • 2012
  • According to electrical output up rating of a permanent magnet motor and request to operate for a large variable speed range, resonance between structural natural vibration and electromagnetic force inside the motor can take place and make noise. This paper describes the mechanism of a resonance between them and noise lowering procedure by frequency shift when they are applied to the reluctance torque largely employed new motor named Permanent magnet Reluctance Motor (PRM).

Reliability-Based Capacity Rating of High-Speed Rail-Road Bridges (신뢰성에 기초한 고속철도 교량의 내하력평가)

  • 조효남;이승재
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.04a
    • /
    • pp.73-81
    • /
    • 1995
  • In Korea, the pilot construction of the first high-speed railroad on the Seoul-Pusan has already started 2 years ago. In the thesis, an attempt is made to develop reliability-based integrity-assessment models for the computer-aided control and maintenance of high-speed railroad bridges. The strength limit state models for PC railroad bridges encompass the bending and shear strengths as well as the strength interaction equations which simultaneously take into the element and system reliablities of the proposed limit states and reliability models. Then, the actual load carrying capacity and the realistic safety of bridges are evaluated using the system reliability-based equivalent strength, and the results are compared with those of the element reliability-based or conventional methods. Various parametric studies are performed for the proposed reliability-based safety and integrity-assessment models using the actual PC box girder bridges used in the pilot construction. And the sensitivity analyses are performed for the basic random variables included in strength limit state models. It is concluded that proposed models may be practically applied for the rational assessment of safety and integrity of high speed railroad bridges.

  • PDF

A Study on utilizing 3D model to input and display the information of structural inspection (3D 객체 모델을 활용한 점검 정보입력 및 표출에 관한 연구)

  • Jang, Jeong-Hwan;An, Ho-Hyun;Park, Sang Deok;Kang, Dong-Hyun
    • Journal of KIBIM
    • /
    • v.3 no.3
    • /
    • pp.1-8
    • /
    • 2013
  • In general, a two-dimensional platform were used to manage the structural inspection information. But we performed a study on utilizing 3D model to input and display the information of structure inspection. Coarse and Fine model of structure were used to input the information. 3D model combined with database built from record plan and field inspections data and rating will provide more intuitive and effective environment for inspectors in bridge maintenance.

Temperature on structural steelworks insulated by inorganic intumescent coating

  • Choi, J. Yoon;Choi, Sengkwan
    • Steel and Composite Structures
    • /
    • v.15 no.1
    • /
    • pp.1-14
    • /
    • 2013
  • Predicting the fire resistance of structures has been significantly advanced by full scale fire tests in conjunction with improved understanding of compartmental fire. Despite the progress, application of insulation is still required to parts of structural steelwork to achieve over 60 minutes of fire rating. It is now recognised that uncertainties on insulation properties hinder adaptation of performance based designs for different types of structures. Intumescent coating has recently appeared to be one of most popular insulation types for steel structures, but its design method remains to be confirmed by empirical data, as technical difficulties on the determination of the material properties at elevated temperatures exist. These need to take into account of further physiochemical transitions such as moving boundary and endothermic reaction. The impetus for this research is to investigate the applicability of the conventional differential equation solution which examines the temperature rise on coated steel members by an inorganic intumescent coating, provided that the temperature-dependent thermal/mechanical insulation properties are experimentally defined in lab scale tests.

Improved prediction of residual effective prestress force of Railway bridge PSC beam (철도교 PSC Beam의 잔류유효긴장력 추정 개선방안 연구(I))

  • Lee, Seong-Won;Lee, Ki-Seong;Lee, Won-Chang
    • Proceedings of the KSR Conference
    • /
    • 2003.10b
    • /
    • pp.538-543
    • /
    • 2003
  • This study is the developed prediction of residual effective prestress force of prestressed concrete beam bridges. Developed prediction method is based on the center camber of prestressed concrete beam, structural design. report of various PSC beams, construction reference materials of PSC beams. Evaluation of residual effective prestress force by developed method is compared with evaluation by structural design. This comparison results shows that this developed method is very effective method. Therefore prediction of residual effective prestress force by this developed method will be used for evaluation of the rating of various PSC beam bridges(road bridges and railway bridges).

  • PDF