• 제목/요약/키워드: structural plasticity

검색결과 452건 처리시간 0.02초

콘크리트의 방향적 비국소 균열 손상을 위한 소성모델 (Plasticity Model for Directional Nonlocal Crack Damage of Concrete)

  • 김재요;박홍근
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.914-921
    • /
    • 2006
  • To describe the effect of the numerous and various oriented microcracks on the compressive and tensile concrete behaviors, the directional nonlocality is defined. The plasticity model using multiple failure criteria is developed for RC planar members in tension-compression. The crack damages are defined in the pre-determined reference orientations, and then the total crack damage is calculated by integrating multi-oriented crack damages. To describe the effect of directional nonlocality on the anisotropic tensile damage, based on the existing test results, the nonlocal damage factor is defined in each reference orientation. The reduced compressive strength in the cracked concrete is defined by the multi-oriented crack damages defined as excluding the tensile normal plastic strain from the compressive equivalent plastic strain. The proposed model is implemented to finite element analysis, and it is verified by comparisons with various existing panel test results.

  • PDF

소성영역 진전효과를 고려한 공간 뼈대구조의 비탄성 해석 (Inelastic Analysis of Space Steel Frames Considering Spread of Plasticity)

  • 한재영;김성보
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.45-52
    • /
    • 2003
  • A finite element procedure to estimate ultimate strength of space frames considering spread of plasticity is presented. The improved displacement field is introduced based on inclusion of second order terms of finite rotations. All the nonlinear terms due to bending and torsional moment as well as axial force are precisely considered. The concept of plastic hinge is introduced and the incremental load/displacement method is applied for the elasto-plastic analysis. The initial yield surface is defined based on the residual stress and the full plastification surface is considered under the combined action of axial force, bending and torsional moments. The elasto-plastic stiffness matrices are derived using the flow rule and the normality condition of the limit function. Finite element solutions for ultimate strength of space frames are compared with available solutions and experimental results.

  • PDF

면내하중을 받는 판의 경계조건에 따른 최종강도거동에 관한 연구 (A Study on the Ultimate Strength Behaviour According to the Boundary Condition of a Plate under Thrust)

  • 고재용;박주신;최익창;이계희
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.557-564
    • /
    • 2002
  • One of the primary factors like plate structure In ship is redundancy structure that is comparable with ocean structure and frame structure. The more component material becomes buckling collapsed locally the less structure stiffness becomes accordingly. As a result, by increasing the load distribution of any other subsidiary structure continually component member collapses, therefore the structure could be in danger of collapse. So, in order to interpret this phenomenon precisely, the study on boundary condition of the ship's Plate and post-buckling analysis must be considered. In this study, the rectangular plate is compressed by the in-plane load. Buckling & Ultimate strength characteristics we applied to be the elasto-plasticity large deformation by F.E.M. On this basis, elasto-plasticity of the plain plate are investigated. This study proved elasto-plasticity behaviour of tile ship's plate In accordance with boundary condition based on the series analysis In case of the compressive load operation.

  • PDF

A return mapping algorithm for plane stress and degenerated shell plasticity

  • Liu, Z.;Al-Bermani, F.G.A.
    • Structural Engineering and Mechanics
    • /
    • 제3권2호
    • /
    • pp.185-192
    • /
    • 1995
  • A numerical algorithm for plane stress and shell elasto-plasticity is presented in this paper. The proposed strain decomposition (SD) algorithm is an elastic predictor/plastic corrector algorithm, and in the context of operator splitting, is a return mapping algorithm. However, it differs significantly from other return mapping algorithms in that only the necessary response functions are used without invoking their gradients, and the stress increment is updated only at the end of the time step. This makes the proposed SD algorithm more suitable for materials with complex yield surfaces and will guard against error accumulation during the time step. Comparative analyses of structural systems using the proposed strain decomposition (SD) algorithm and the iterative radial return (IRR) algorithm are presented. The results demonstrate the accuracy and usefulness of the proposed algorithm.

Dynamic impedance of a 3×3 pile-group system: Soil plasticity effects

  • Gheddar, Kamal;Sbartai, Badreddine;Messioud, Salah;Dias, Daniel
    • Structural Engineering and Mechanics
    • /
    • 제83권3호
    • /
    • pp.377-386
    • /
    • 2022
  • This paper considers dynamic impedance functions and presents a detailed analysis of the soil plasticity influence on the pile-group foundation dynamic response. A three-dimensional finite element model is proposed, and a calculation method considering the time domain is detailed for the nonlinear dynamic impedance functions. The soil mass is modeled as continuum elastoplastic solid using the Mohr-Coulomb shear failure criterion. The piles are modeled as continuum solids and the slab as a structural plate-type element. Quiet boundaries are implemented to avoid wave reflection on the boundaries. The model and method of analysis are validated by comparison with those published on literature. Numerical results are presented in terms of horizontal and vertical nonlinear dynamic impedances as a function of the shear soil parameters (cohesion and internal friction angle), pile spacing ratio and frequencies of the dynamic signal.

플라스틱 사출인장시편의 단순인장시험 및 선형구조해석 (Linear Structural Analysis and Simple Tensile Test of Plastic Injection Molding Tensile Specimen)

  • 이도명;한병기;이성희
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.230-233
    • /
    • 2006
  • In this study, the effects of residual stress induced by plastic injection molding process on the tensile behavior of plastic tensile test specimen were investigated. To manufacture plastic tensile test specimens, an injection mold based on the international standard system was designed and made. Cavity pressure and temperature sensors were installed inside of the presented mold to monitor pressure and temperature values during the cycle of injection molding. Injection molding simulation was performed with the same condition of experiment and linear structural tensile analysis was also performed with the initial condition of the residual stress. It was shown that the residual stress induced by injection molding has an effect on the experiment of tensile test and linear structural tensile simulation.

  • PDF

나노압입에 의한 반도체 소재의 구조상전이 해석 (Structural Phase Transformations in Semiconductor Material Induced by Nanoindentation)

  • 김동언;오수익
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.77-80
    • /
    • 2006
  • Structural phase transformations of silicon during nanoindentation were investigated in detail at the atomic level. The molecular dynamics simulations of nanoindentation on the (100), (110) and (111) surface of single crystalline silicon were simulated, and this supported the theoretical prediction of the anisotropic behavior of structural phase transformations. Simulations showed that microscopic aspects of phase transformation varied according to the crystallographic orientation of the contact surface and were directly linked to the slip system.

  • PDF

Effect of creep on behaviour of steel structural assemblies in fires

  • Cesarek, Peter;Kramar, Miha;Kolsek, Jerneja
    • Steel and Composite Structures
    • /
    • 제29권4호
    • /
    • pp.423-435
    • /
    • 2018
  • There are presently two general ways of accounting for hazardous metal creep in structural fire analyses: either we incorporate creep strains implicitly in hardening model ('implicit-creep' plasticity) or we account for creep explicitly ('explicit-creep' plasticity). The first approach is simpler and usually used for fast engineering applications, e.g., following proposals of EN 1993-1-2. Prioritizing this approach without consideration of its limitations, however, may lead to significant error. So far the possible levels of such error have been demonstrated by few researchers for individual structural elements (i.e., beams and columns). This paper, however, presents analyses also for selected beam-girder assemblies. Special numerical models are developed correspondingly and they are validated and verified. Their important novelty is that they do not only account for creep in individual members but also for creep in between-member connections. The paper finally shows that outside the declared applicability limits of the implicit-creep plasticity models, the failure times predicted by the applied alternative explicit-creep models can be as much as 40% shorter. Within the limits, however, the discrepancies might be negligible for majority of cases with the exception of about 20% discrepancies found in one analysed example.