• Title/Summary/Keyword: structural performance test

Search Result 2,177, Processing Time 0.03 seconds

Research and practice of health monitoring for long-span bridges in the mainland of China

  • Li, Hui;Ou, Jinping;Zhang, Xigang;Pei, Minshan;Li, Na
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.555-576
    • /
    • 2015
  • The large number of long-span bridges constructed in China motivates the applications of structural health monitoring (SHM) technology. Many bridges have been equipped with sophisticated SHM systems in the mainland of China and in Hong Kong of China. Recently, SHM technology has been extended to field test systems. In this view, SHM can serve as a tool to develop the methods of life-cycle performance design, evaluation, maintenance and management of bridges; to develop new structural analysis methods through validation and feedback from SHM results; and to understand the behavior of bridges under natural and man-made disasters, rapidly assess the damage and loss of structures over large regions after disasters, e.g., earthquake, typhoon, flood, etc. It is hoped that combining analytical methods, numerical simulation, small-scale tests and accelerated durability tests with SHM could become the main engine driving the development of bridge engineering. This paper demonstrates the above viewpoint.

A comparative study of multi-objective evolutionary metaheuristics for lattice girder design optimization

  • Talaslioglu, Tugrul
    • Structural Engineering and Mechanics
    • /
    • v.77 no.3
    • /
    • pp.417-439
    • /
    • 2021
  • The geometric nonlinearity has been successfully integrated with the design of steel structural system. Thus, the tubular lattice girder, one application of steel structural systems have already been optimized to obtain an economic design following the completion of computationally expensive design procedure. In order to decrease its computing cost, this study proposes to employ five multi-objective metaheuristics for the design optimization of geometrically nonlinear tubular lattice girder. Then, the employed multi-objective optimization algorithms (MOAs), NSGAII, PESAII, SPEAII, AbYSS and MoCell are evaluated considering their computing performances. For an unbiased evaluation of their computing performance, a tubular lattice girder with varying size-shape-topology and a benchmark truss design with 17 members are not only optimized considering the geometrically nonlinear behavior, but three benchmark mathematical functions along with the four benchmark linear design problems are also included for the comparison purpose. The proposed experimental study is carried out by use of an intelligent optimization tool named JMetal v5.10. According to the quantitative results of employed quality indicators with respect to a statistical analysis test, MoCell is resulted with an achievement of showing better computing performance compared to other four MOAs. Consequently, MoCell is suggested as an optimization tool for the design of geometrically nonlinear tubular lattice girder than the other employed MOAs.

Deep neural network for prediction of time-history seismic response of bridges

  • An, Hyojoon;Lee, Jong-Han
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.401-413
    • /
    • 2022
  • The collapse of civil infrastructure due to natural disasters results in financial losses and many casualties. In particular, the recent increase in earthquake activities has highlighted on the importance of assessing the seismic performance and predicting the seismic risk of a structure. However, the nonlinear behavior of a structure and the uncertainty in ground motion complicate the accurate seismic response prediction of a structure. Artificial intelligence can overcome these limitations to reasonably predict the nonlinear behavior of structures. In this study, a deep learning-based algorithm was developed to estimate the time-history seismic response of bridge structures. The proposed deep neural network was trained using structural and ground motion parameters. The performance of the seismic response prediction algorithm showed the similar phase and magnitude to those of the time-history analysis in a single-degree-of-freedom system that exhibits nonlinear behavior as a main structural element. Then, the proposed algorithm was expanded to predict the seismic response and fragility prediction of a bridge system. The proposed deep neural network reasonably predicted the nonlinear seismic behavior of piers and bearings for approximately 93% and 87% of the test dataset, respectively. The results of the study also demonstrated that the proposed algorithm can be utilized to assess the seismic fragility of bridge components and system.

Design of Fiber Reinforced Cement Matrix Composite Produced with Limestone Powder and Flexural Performance of Structural Members (석회석 미분말을 혼입한 시멘트계 매트릭스 섬유복합재료의 설계 및 구조부재의 휨성능)

  • Hyun, Jung-Hwan;Kim, Yun-Yong
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.328-335
    • /
    • 2016
  • The purpose of this study is to develop fiber reinforced cement matrix composite (ECC) produced with limestone powder in order to achieve high ductility of the composite, and to evaluate flexural performance of structural members made with ECC. Four kinds of mixture proportions were determined on the basis of the micromechanics and a steady state cracking theory considering the matrix fracture toughness and fiber-matrix interfacial characteristics. The mechanical properties of ECC, represented by strain-hardening behavior in uniaxial tension, were investigated. Also, strength property of the composite was experimentally evaluated. Two structural members made with ECC were produced and tested. Test results were compared with those of conventional concrete structural members. Increased limestone powder contents of ECC provides higher ductility of the composites while generally resulting in a lower strength property. ECC structural members exhibited higher flexural ductility, higher flexural load-carrying capacity and tighter crack width compared to conventional structural members.

Thermal and Vibration Analysis of TR Module Structural Model for Environmental Test Evaluation (환경시험 평가를 위한 TR 모듈 구조모델의 열/진동 해석)

  • Dong-Seok Kang;Jong-Pil Kim;Yuri Lee;Sung-Woo Park;Jin-Ho Roh
    • Journal of Aerospace System Engineering
    • /
    • v.18 no.4
    • /
    • pp.96-101
    • /
    • 2024
  • The Synthetic Aperture Radar (SAR) is equipped with a Transmitter/Receiver (TR) module, which serves as the signal transmission and reception unit for acquiring image data. The TR module generates significant heat during signal generation and amplification, potentially degrading performance or causing mission failure. Furthermore, launch and operational environments may result in structural damage to the components. Thus, assessing the thermal and structural safety of the TR module through thermal and vibration tests is essential to guarantee its safety. Safety assessments can be verified through environmental tests prescribed in MIL-STD-883. This paper explores the thermal and structural safety characteristics of the TR module by simulating test environments using finite element analysis prior to conducting environmental tests.

Incorporating nonstructural finish effects and construction quality in a performance-based framework for wood shearwall design

  • Kim, Jun Hee;Rosowsky, David V.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.1
    • /
    • pp.83-100
    • /
    • 2005
  • This paper presents results from a study to extend a performance-based shearwall selection procedure to take into account the contributions of nonstructural finish materials (such as stucco and gypsum wallboard), construction quality issues, and their effects on the displacement performance of engineered wood shearwalls subject to seismic loading. Shearwall performance is evaluated in terms of peak displacements under seismic loading (characterized by a suite of ordinary ground motion records) considering different combinations of performance levels (drift limits) and seismic hazard. Shearwalls are analyzed using nonlinear dynamic time-history analysis with global assembly hysteretic parameters determined by fitting to actual shearwall test data. Peak displacement distributions, determined from sets of analyses using each of the ground motion records taken to characterize the seismic hazard, are postprocessed into performance curves, design charts, and fragility curves which can be used for risk-based design and assessment applications.

Effect of Customer-acquisition Orientation on Salespeople's Performance in Distribution of Pharmaceuticals

  • CHO, Yeonjin;JEON, Jin-A
    • Journal of Distribution Science
    • /
    • v.20 no.10
    • /
    • pp.119-129
    • /
    • 2022
  • Purpose: The purpose of this study was to investigate sales managers' strategic focus on customer acquisition, specifically its effect on salespeople's performance. In addition, this study aimed to determine how salespeople's interpersonal skills, salesmanship skills, and technical knowledge affect the relationship between customer-acquisition management and salespeople's performance. Research design, data, and methodology: This study conducted a survey of 310 salespeople working at pharmaceutical companies. A structural equation modeling approach was applied to test the main effects and interaction effects using AMOS. Results: The results indicated that both managers' customer-acquisition orientation and salespeople's salesmanship skills and technical knowledge positively affected the latter's performance. Further, it was found that the higher the technical knowledge of the salesperson, the greater the effect of the customer-acquisition orientation on sales performance. Conclusions: Sales managers should enable salespeople to quickly acquire technical knowledge with respect to the market, products, competitors, and company policy so that they can bring greater synergy to the customer-acquisition orientation.

Evaluation criteria for filling performance of high-flowing concrete using steel-concrete panel

  • Dong Kyu Lee;Jae Seon Kim;Myoung Sung Choi
    • Advances in concrete construction
    • /
    • v.16 no.5
    • /
    • pp.231-241
    • /
    • 2023
  • The purpose of this study was to evaluate the practical application of high-flowing concrete for a steel-concrete panel (SCP) module for a liquefied natural gas (LNG) storage tank. We evaluated the physical properties and filling performance of the developed concrete for the SCP module. First, slump tests were performed to evaluate the performance of the proposed standards for the filling tests. All the concrete mixes showed satisfactory performance. Based on the results of the previous study, the reliability of the required time measured using the T500 test and the rheometer results measured before and after pumping was 0.94, indicating that segregation and blocking should not occur. L-box and U-box tests were conducted before and after pumping. All the recommended standards showed satisfactory performance. The SCP structural module for LNG storage tanks was fabricated to a full scale to evaluate its practical application at the final site. Satisfactory filling performance was confirmed for all the specimens.

Electrical Characteristics and Performance Evaluation with Manufacturing Process of Zinc Oxide Varistors (산화아연소자의 성형공정에 따른 전기적 특성과 성능평가)

  • Cho, Han-Goo;Yoon, Han-Soo;Kim, Suk-Soo;Choi, In-Hyuk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.11
    • /
    • pp.1061-1066
    • /
    • 2006
  • This paper presents the electrical characteristics with manufacturing process and performance evaluation of high performance zinc oxide varistors. ZnO varistors were fabricated with typical ceramic production methods with different thickness and the structural and electrical characteristics of ZnO varistors were investigated. All varistors exhibited high density, which was in the range of $5.41{\sim}5.49g/cm^3$. In the electrical properties, the reference voltage increased in the range of $4.410{\sim}5.250kV$ with increasing their thickness and the residual voltage exhibited the same trends as the reference voltage. In the long duration current impulse withstand test, E-2 and F-1 samples failed at the two and four shots of impulse current, respectively, but E-1 and F-2 samples survived 18 shots during the test. Before and after this test, the variation ratio of residual voltage of E-1 and F-2 samples were -0.34 % and 0.05 %, respectively, which were in the acceptance range of 5 %. According to the results of tests, it is thought that if the fabrication process such as insulating coating, sintering condition, and soldering method is improved, these ZnO varistors would be possible to apply to the station class arresters in the near future.

Vertical Vibration Isolator for Reducing Structural Vibration (구조물의 진동저감을 위한 수직형 면진장치)

  • Choi, Sanghyun;Baek, Joon-Ho;Lee, You In
    • Journal of the Society of Disaster Information
    • /
    • v.8 no.2
    • /
    • pp.197-203
    • /
    • 2012
  • In these days, the design of a structure for reducing or eliminating noise and vibration is getting more important, as the social demands for reducing environmental pollution rise. In this paper, the basic concept and performance verification test results of the recently developed vertical vibration isolator are presented. The isolator attenuates vibration using the damping action from the friction plane made of PTFE and provides the restoring force from the polyurethane springs arranged in vertical and horizontal directions. The performance verification tests consist of a test for identifying performance change during load rate variation and a test for confirming the force-displacement relationship assumption in vibration force range.