• Title/Summary/Keyword: structural performance test

Search Result 2,146, Processing Time 0.029 seconds

Performance of cyclic loading for structural insulated panels in wall application

  • Nah, Hwan-Seon;Lee, Hyeon-Ju;Choi, Sung-Mo
    • Steel and Composite Structures
    • /
    • v.14 no.6
    • /
    • pp.587-604
    • /
    • 2013
  • There are few technical documents regulated structural performance and engineering criteria in domestic market for Structural insulated panels in Korea. This paper was focused to identify fundamental performance under monotonic loading and cyclic loading for SIPs in shear wall application. Load-displacement responses of total twelve test specimens were recorded based on shear stiffness, strength, ultimate load and displacement. Finally energy dissipation of each specimen was analyzed respectively. Monotonic test results showed that ultimate load was 44.3 kN, allowable shear load was 6.1 kN/m, shear stiffness was 1.2 MN/m, and ductility ratio was 3.6. Cyclic test was conducted by two kinds of specimens: single panel and double panels. Cyclic loading results, which were equivalent to monotonic loading results, showed that ultimate load was 45.4 kN, allowable shear load was 6.3 kN/m. Furthermore the accumulated energy dissipation capability for double panels was as 2.3 times as that for single panel. Based on results of structural performance test, it was recommended that the allowable shear load for panels should be 6.1 kN/m at least.

Development of Hydraulic Device Performance Test Equipment Automation Process (유압 디바이스 성능 검사 장비 자동화 공정 개발)

  • Kim, Hong-Rok;Chung, Won-Jee;Seol, Sang-Seok;Park, Sang-Hyeok;Lee, Kyeong-Tae
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.10
    • /
    • pp.74-80
    • /
    • 2020
  • Crawler-type hydraulic devices facilitate forward and backward driving of construction equipment by converting power into mechanical energy. The existing hydraulic device performance test process is time- and labor-intensive. This study aims to improve efficiency and productivity by automating the hydraulic device production performance test processes, which have been separately conducted so far. We also used SolidWorksⓇ, a 3D modeling program, and ANSYSⓇ, a structural analysis tool, for structural analysis and to verify the suitability of fixing pins required for connecting a hydraulic device to performance test equipment. Our results that employing an automated hydraulic device performance test process improves efficiency.

Seismic Performance and Design Process of a Ceiling Bracket-Typed Modular Connection (천장 브래킷형 모듈러 시스템의 접합부 내진 성능과 설계 프로세스)

  • Lee, Seungjae;Kang, Changhoon;Park, Jaeseong;Kwak, Euishin;Shon, Sudeok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.20 no.3
    • /
    • pp.27-34
    • /
    • 2020
  • This paper examines the seismic performance and structural design of the ceiling bracket-type modular connection. The bracket-type system reduces the cross-sectional area loss of members and combines units using fitting steel plate, and it has been developed to be fit for medium-story and higher-story buildings. In particular, this study conducted the cyclic loading test for the performance of the C-type and L-type brackets, and compared the results. The test results were also compared with the commercial FEA program. In addition, the structural design process for the bracket-type modular connection was presented. The two connections, proposed as a result of the test results, were all found to secure the seismic performance level of the special moment steel frame. In the case of initial stiffness, the L-type bracket connection was found to be great, but in the case of the maximum moment or fully plastic moment, it was different depending on the loading direction.

Pseudo-dynamic and cyclic loading tests on a steel-concrete vertical hybrid structure

  • Wang, Bo;Wu, Tao;Dai, Huijuan;Bai, Guoliang;Wu, Jian
    • Earthquakes and Structures
    • /
    • v.17 no.4
    • /
    • pp.399-409
    • /
    • 2019
  • This paper presents the experimental investigations on the seismic performance of a peculiar steel-concrete vertical hybrid structural system referred to as steel truss-RC tubular column hybrid structure. It is typically applied as the supporting structural system to house air-cooled condensers in thermal power plants (TPPs). Firstly, pseudo-dynamic tests (PDTs) are performed on a scaled substructure to investigate the seismic performance of this hybrid structure under different hazard levels. The deformation performance, deterioration behavior and energy dissipation characteristics are analyzed. Then, a cyclic loading test is conducted after the final loading case of PDTs to verify the ultimate seismic resistant capacity of this hybrid structure. Finally, the failure mechanism is discussed through mechanical analysis based on the test results. The research results indicate that the steel truss-RC tubular column hybrid structure is an anti-seismic structural system with single-fortification line. RC tubular columns are the main energy dissipated components. The truss-to-column connections are the structural weak parts. In general, it has good ductile performance to satisfy the seismic design requirements in high-intensity earthquake regions.

Performance Evaluation of NDE Methods in Condition Assessment of Structural Elements (구조물 진단에 있어 비파괴 시험법의 성능평가)

  • Shim, Hyung Seop;Kang, Bo Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.3
    • /
    • pp.167-175
    • /
    • 2007
  • The relations between data from test methods and conditions in structural elements are considered. NDE(Nondestructive Evaluation) methods are joint application of a test and a basis for interpretation of data obtained in the test. Correct assessments of conditions of elements depend on the inaccuracy and variability in the test data and on the uncertainty of correlations between attributes(what is measured) and conditions(what is sought in the inspection). A full description of the performance of NDE methods considers the relation of test data to condition of elements. The quality of the test data itself is important, but equally important is the interpretation that occurs after the test. To make the decision of the performance of NDE methods, this paper presents mathematical basis to measure the reliability of NDE methods.

Structural performance of GFRP-concrete composite beams

  • Yang, Yong;Xue, Yicong;Zhang, Tao;Tian, Jing
    • Structural Engineering and Mechanics
    • /
    • v.68 no.4
    • /
    • pp.485-495
    • /
    • 2018
  • This paper presents the results of an experimental study on the structural performance of an innovative GFRP-concrete composite beam construction, which is reinforced with longitudinal GFRP pultruded box-profile and transverse steel stirrups. GFRP perfobond (PBL) shear connectors are employed to enhance the bonding performance between the GFRP profile and the concrete portion. To investigate the shear and flexural performance of this composite system, eight specimens were designed and tested under three-point and four-point bending. The main variables were the height of the composite beam and the shear span-to-depth ratio. The test results indicated that bonding cracks did not occur at the interface between the GFRP profile and the concrete until the final stage of the test. This shows that the specimens performed well as composite beams during the test and that the GFRP PBL connectors were reliable. Based on the test results, two calculation methods were used to determine the flexural and shear capacity of the composite beams. A comparative study of the test and theoretical results suggests that the proposed methods can reasonably predict both the flexural and shear capacities of the specimens, whereas the provisions of ACI 440 are relatively conservative on both counts.

A Study on Structural Integrity and Dynamic Characteristic of Inertial Load Test Equipment for Performance Test of Railway Vehicle Propulsion Control System (철도차량 추진제어장치 성능시험을 위한 관성부하 시험설비의 구조안전성 및 동특성 평가 연구)

  • Jang, Hyung-Jin;Shin, Kwang-Bok;Lee, Sang-Hoon;Lee, Dae-Bong
    • Journal of the Korean Society for Railway
    • /
    • v.13 no.4
    • /
    • pp.363-370
    • /
    • 2010
  • This paper describes the evaluation of structural integrity and dynamic characteristic of inertial load test equipments for performance test of railway vehicle propulsion control system. The propulsion control system of railway vehicle has to be confirmed of safety and reliability prior to its application. Therefore, inertial load test equipments were designed through theoretical equation for performance test of propulsion control system. The structural analysis of inertial load test equipments was conducted using Ansys v11.0 and the dynamic characteristic was evaluated using Adams. The results showed that the structural integrity of inertial load test equipment was satisfied with a safety factor of 10.2 on the bearing part under combined load. Also, the structural stability of flywheel according to dynamic simulation was secured by the maximum oscillation displacement within 0.83mm.

Improvement and Evaluation of Structural Performance of Steel Fiber Reinforced Concrete Beams Using Early Age Concrete (초기재령 강섬유보강 철근콘크리트 보의 구조성능 평가 및 개선)

  • Ha, Gee-Joo;Shin, Jong-Hack;Kwak, Yoon-Keun;Kwon, Chil-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.3
    • /
    • pp.129-137
    • /
    • 1999
  • Reinforced concrete structures using early age concrete were result in the degradation of structural performance due to crack, overload, unexpected vibration and impact load. It demands urgently that reinforced concrete structure using early age concrete should be improved the serviceability and structural performance with the application of new fiber materials. Therefore specimens, designed by the test varibles, such as with or without stirrup and percent of steel fiber incorporated, were constructed and tested to evaluate and develop the structural performance of reinforced steel fiber concrete beam. Based on the test results reported in this study, the following conclusions are made. Specimens, designed by the over 0.75% of steel fiber incorporated, were showed the ductile behavior and failed slowly with flexure and flexure-shear. Comparing with the load-displacement relationship of specimen BSS, designed by the recommendations of the Ministry of Construction and Transportation, reinforced steel fiber concrete beam using early age concrete, over 0.75% of steel fiber incorporated, gets enough load carrying capacity and ductility. Increasing the percent of steel fiber incorporated(0.25~2.0%), the ultimate shear stress of each specimen were increased 12~40% than that of control specimen SSS.

  • PDF

A Study on the Structural Performance of the Building Exterior Panel Using the Moving Clips (이동 클립을 이용한 건축물 외장재의 구조적 성능에 관한 연구)

  • Kwak, Eui-Shin;Ki, Chang-Gun;Lee, Sang-Ho;Shon, Su-Deok;Lee, Seung-Jae
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.33 no.12
    • /
    • pp.29-36
    • /
    • 2017
  • A recent global trend in the increase of earthquake-related disasters has become so frequent as to cause various damages to a wide range of mid- to high-rise buildings. Particularly, more attention is being paid to the effect of horizontal load in high-rise buildings not only on the key structural elements of the structures, but also on the possibility of the secondary damages to them due to the failure of exterior panels, which are non-structural elements, but such damages are difficult to cope with as they may be caused by unexpected changes. The present study examined exterior panels using moving clips to prevent such secondary damages on the non-structural elements and analyzed the structural performance of these exterior panels through the finite element analysis and the shaking table test. The analysis results showed that the exterior panels using moving clips satisfied the structural performance against the allowable story drift of KBC2009 and the safety of the exterior panels was verified by the shake table test.

Welding and Moment Resisting Performance of R/C Column-Steel Girder Connection (철근콘크리트 기둥-철골 보 접합부의 용접성능 및 휨 저항성능)

  • 전재범;최광호;이세웅;김상식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.553-558
    • /
    • 1999
  • As a process of development of composite beam-column connection system, structural tests have been conducted to verify moment resisting performance of the system. The tests have been proceeded by two steps, the first being welding performance test of the steel connection rod and stiffners, and the second overall moment resisting capacity of the fuly assembled system. Ten welding test specimens and four prototype specimens have been used in the test. Good structural performance of welding test specimens has been observed without any single welding failure, and sufficient moment resisting capacity has been proved from the overall performance test, with the moment magnitude in excess of the calculated plastic moment.

  • PDF