• Title/Summary/Keyword: structural performance test

Search Result 2,156, Processing Time 0.027 seconds

Durability Assessment by Structural and Fatigue Analysis of Flow Control Valves (FCVs) for Hydrogen Refueling Stations (수소 충전소용 유량제어밸브(FCV)의 구조 및 피로해석을 통한 내구 성능 평가)

  • CHOI, INHO;HA, TAE IL;KIM, HAN SANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.3
    • /
    • pp.240-246
    • /
    • 2022
  • This study was conducted to develop a domestic product for a flow control valve for a hydrogen refueling station, and a domestic prototype was manufactured and the durability performance evaluation was conducted through comparison with an imported products. The stress generated by the internal pressure was checked and safety was confirmed using a commercial structural analysis program, ABAQUS, in accordance with the withstand pressure test standards. In addition, after identifying the weak areas the fatigue life was predicted through a commercial software, fe-safe. This fatigue analysis showed that the hydrogen gas repeated test criteria were satisfied.

Shrinkage Reduction Performance of HPFRCC Using Expansive and Srhinkage Reducing Admixtures (팽창재와 수축저감제를 사용한 HPFRCC의 수축 저감 성능)

  • Park, Jung-Jun;Moon, Jae-Heum;Park, Jun-Hyoung;Lee, Jang-Hwa;Kim, Sung-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.5
    • /
    • pp.34-40
    • /
    • 2014
  • High-performance fiber-reinforced cement composite (HPFRCC) shows very high autogenous shrinkage, because it contains a low water-to-binder ratio (W/B) of 0.2 and high fineness admixture without coarse aggregate. Thus, it needs a method to decrease the cracking potential. Accordingly, in this study, to effectively reduce the shrinkage of HPFRCC, a total of five different ratios of SRA (1% and 2%), EA (5% and 7.5%), and a combination of SRA and EA (1% and 7.5%) were considered. According to the test results of ring-test, a combination of SRA and EA (1% and 7.5%) showed best performance regarding restrained shrinkage behavior without significant deterioration of compressive and tensile strengths. This was also verified by performing modified drying shrinkage crack test.

A two-level parallel algorithm for material nonlinearity problems

  • Lee, Jeeho;Kim, Min Seok
    • Structural Engineering and Mechanics
    • /
    • v.38 no.4
    • /
    • pp.405-416
    • /
    • 2011
  • An efficient two-level domain decomposition parallel algorithm is suggested to solve large-DOF structural problems with nonlinear material models generating unsymmetric tangent matrices, such as a group of plastic-damage material models. The parallel version of the stabilized bi-conjugate gradient method is developed to solve unsymmetric coarse problems iteratively. In the present approach the coarse DOF system is solved parallelly on each processor rather than the whole system equation to minimize the data communication between processors, which is appropriate to maintain the computing performance on a non-supercomputer level cluster system. The performance test results show that the suggested algorithm provides scalability on computing performance and an efficient approach to solve large-DOF nonlinear structural problems on a cluster system.

A new strength model for the high-performance fiber reinforced concrete

  • Ramadoss, P.;Nagamani, K.
    • Computers and Concrete
    • /
    • v.5 no.1
    • /
    • pp.21-36
    • /
    • 2008
  • Steel fiber reinforced concrete is increasingly used day by day in various structural applications. An extensive experimentation was carried out with w/cm ratio ranging from 0.25 to 0.40, and fiber content ranging from zero to1.5 percent by volume with an aspect ratio of 80 and silica fume replacement at 5%, 10% and 15%. The influence of steel fiber content in terms of fiber reinforcing index on the compressive strength of high-performance fiber reinforced concrete (HPFRC) with strength ranging from 45 85 MPa is presented. Based on the test results, equations are proposed using statistical methods to predict 28-day strength of HPFRC effecting the fiber addition in terms of fiber reinforcing index. A strength model proposed by modifying the mix design procedure, can utilize the optimum water content and efficiency factor of pozzolan. To examine the validity of the proposed strength model, the experimental results were compared with the values predicted by the model and the absolute variation obtained was within 5 percent.

Evaluation of Structural Behaviour of High Performance Permanent Form with Stainless Steel Fiber

  • Sim Jong Sung;Oh Hong Seob;Ju Min Kwan;Shih Hyun Yang;Han Jeong Jin;Sohn Yushin
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.499-502
    • /
    • 2005
  • Nowadays, the stripping work of form has generated some problems such as increasing total constructing cost result from delayed work schedule by the stripping work of form and environmental issues by wasting the debonded form. According to recent research for form work, it has studied about permanent form to solve economic and environmental problem which is commented above. In this study, high performance permanent form method was developed and tested by adopting COM and TEN specimens adopted on the Compression and Tensile section then the structural behaviour was investigated. In the test result, the specimen adopted the form showed better structural performance than control specimen in the point of ductility, failure mode and ultimate load.

  • PDF

Experimental study on seismic performance of coupling beams not designed for ductility

  • Lam, S.S.E.;Wu, B.;Liu, Z.Q.;Wong, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.3
    • /
    • pp.317-334
    • /
    • 2008
  • Seismic performance of coupling beams not designed for ductility is examined. Eight 1:4 scale coupling beam specimens, with seven reinforced concrete sections and one composite section, were tested under cycles of push-pull action. Characteristics of the specimens include moderate shear span ratio in the range of 2.5-3.5, high main reinforcement ratio at 3-4% and small to large stirrup spacing with 90- degree hooks. All the reinforced concrete specimens failed in a brittle manner. Displacement ductility of specimens with large stirrup spacing (${\geq}$140 mm) is in the range of 3 to 5. Seismic performance of the specimens is also examined using the ultimate drift angle and the amount of energy dissipated. Correlating the test data, an empirical relationship is proposed to estimate the ultimate drift angle of a class of coupling beams considered in the study not designed for ductility.

Experimental study on lateral behavior of precast wide beam-column joints

  • Kim, Jae Hyun;Jang, Beom Soo;Choi, Seung-Ho;Lee, Yoon Jung;Jeong, Ho Seong;Kim, Kang Su
    • Earthquakes and Structures
    • /
    • v.21 no.6
    • /
    • pp.653-667
    • /
    • 2021
  • In this study, cyclic loading tests were conducted on the precast concrete (PC) wide beam (WB)-column joints. Two beam-column joint specimens were fabricated with the arrangement and anchorage details of the reinforcing bars penetrating the beam and column as variables. Through a cyclic loading test, the lateral load-story drift ratio responses, seismic performance characteristics (e.g., ductility, overstrength factor), energy dissipation, strength and stiffness degradations of each specimen were compared and analyzed based on the various indices and the current structural codes (ACI 318-19 and ACI 374.1-05 report). In addition, the shear lag effect was confirmed through the gauge values of the PC beam, and the differences in seismic performance between the specimens were identified on that basis.

Inspection of Structural Elements Using NDE (비파괴 시험을 이용한 RC 구조물 상태진단)

  • Shim, Hyung-Seop
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.5 s.57
    • /
    • pp.101-108
    • /
    • 2009
  • Mathematical basis of interpretation of data from nondestructive evaluation (NDE) methods in condition assessment of structures is presented. In structural inspection with NDE methods, NDE data are not directly used for the condition assessment. Instead, NDE data must be interpreted as condition of inspected element. Correct assessments of conditions depend on many factors such as the inaccuracy and the variability in NDE measurements and the uncertainty in correlation between attributes (what is measured) and conditions (what is sought in the inspection). A full description of the performance of NDE methods considers the relation of test data to conditions of elements. The quality of the test itself is important, but equally important is the interpretation that occurs after the test. The effects of variability in test data and uncertainty in correlations of attributes and conditions are presented in three examples of field testing methods.

Real-scale field testing for the applicability examination of an improved modular underground arch culvert with vertical walls

  • Tae-Yun Kwon;Jin-Hee Ahn;Hong-duk Moon;Kwang-Il Cho;Jungwon Huh
    • Advances in concrete construction
    • /
    • v.15 no.6
    • /
    • pp.377-389
    • /
    • 2023
  • In this study, an improved modular arch system with the lower arch space composed of a precast arch block and an outrigger was proposed as an underground culvert, and its applicability and structural behaviors were confirmed. This modular arch culvert structure with vertical walls was designed using precast blocks and by adjusting the placement spacing of concrete blocks to the upper part form an arch shape and the lower part form a vertical wall shape, based on previously researched modular arch systems. Owing to the vertical wall of the proposed modular arch system, it is possible to secure a load-carrying capacity and an arch space that can sufficiently resist the earth pressure generated from the backfill soil and loading on the arch system. To verify the structural characteristics, and applicability of the proposed modular precast arch culvert structure, a full-scale modular culvert specimen was fabricated, and a loading test was conducted. By examining its construction process and loading test results, the applicability and constructability of the proposed structure were analyzed along with its structural characteristics. In addition, its the structural predictability and safety for the applicability were evaluated by comparing the construction process and loading test results with the FE analysis results.

A Study on Structural Performance of HB-DECK and Cast in Place Concrete Slab (HB-DECK와 현장타설 콘크리트 슬래브의 구조성능에 관한 연구)

  • Lee, Wang-Su;Lho, Byeong-Cheol;Cho, Hyun-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.59-67
    • /
    • 2018
  • The interference between the lattice bar of existing LB-DECK and the bars placed at site degrades the constructability, which is pointed as a problem. HB-DECK simplified the shape of lattice bar, and converted the direction of main rebar direction to the distributing bar direction, and installed the rib on the underside of HB-DECK to increase the stiffness. The purpose of this study is to verify the structural performance of HB-DECK and cast in place concrete slab. The static load test was conducted to verify the structural performance according to Korean highway bridge design code(2015) and composite behavior of HB-DECK with Cast in Place Concrete Slab. Three-dimensional finite element analysis was carried by MIDAS FEA, and analyzed to compare the result of analysis and experiment. At a result, composite behavior was examined between HB-DECK and cast in place concrete slab, and structural performance satisfied Korean highway bridge design code(2015).