• Title/Summary/Keyword: structural monitoring

Search Result 1,901, Processing Time 0.025 seconds

Structural health monitoring and resilient assessment by novel intelligent models

  • C.C. Hung;T. Nguyen;C.Y. Hsieh
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.4
    • /
    • pp.339-360
    • /
    • 2023
  • In this paper, to assess the performance of a multi-span simply supported RC bridge, the dynamic characteristics of the bridge were measured and determined by structural health monitoring and resilient assessment via operational modal analysis as well as FE modeling. Supporting finite element (FE) models were created and analyzed according to the design drawings. This study used 2D plane monitoring of locations of hole in the infill wall and used 3D health monitoring and resilient assessment. From the results of 3Dsymmetric frame, if the frame is unsymmetrical, the used model can lead to the reduction in the internal forces. The recommendations from this study is from some discrepancies observed between 2D and 3D models, if possible 3D model should be used in analyzing the real frames.

Design and implementation of a SHM system for a heritage timber building

  • Yang, Qingshan;Wang, Juan;Kim, Sunjoong;Chen, Huihui;Spencer, Billie F. Jr.
    • Smart Structures and Systems
    • /
    • v.29 no.4
    • /
    • pp.561-576
    • /
    • 2022
  • Heritage timber structures represent the history and culture of a nation. These structures have been inherited from previous generations; however, they inevitably exhibit deterioration over time, potentially leading to structural deficiencies. Structural Health Monitoring (SHM) offers the potential to assess operational anomalies, deterioration, and damage through processing and analysis of data collected from transducers and sensors mounted on the structure. This paper reports on the design and implementation of a long-term SHM system on the Feiyun Wooden Pavilion in China, a three-story timber building built more than 500 years ago. The principles and features of the design and implementation of SHM systems for heritage timber buildings are systematically discussed. In total, 104 sensors of 6 different types are deployed on the structure to monitor the environmental effects and structural responses, including air temperature and humidity, wind speed and direction, structural temperatures, strain, inclination, and acceleration. In addition, integrated data acquisition and transmission subsystem using a newly developed software platform are implemented. Selected preliminary statistical and correlation analysis using one year of monitoring data are presented to demonstrate the condition assessment capability of the system based on the monitoring data.

Intelligent bolt-jointed system integrating piezoelectric sensors with shape memory alloys

  • Park, Jong Keun;Park, Seunghee
    • Smart Structures and Systems
    • /
    • v.17 no.1
    • /
    • pp.135-147
    • /
    • 2016
  • This paper describes a smart structural system, which uses smart materials for real-time monitoring and active control of bolted-joints in steel structures. The goal of this research is to reduce the possibility of failure and the cost of maintenance of steel structures such as bridges, electricity pylons, steel lattice towers and so on. The concept of the smart structural system combines impedance based health monitoring techniques with a shape memory alloy (SMA) washer to restore the tension of the loosened bolt. The impedance-based structural health monitoring (SHM) techniques were used to detect loosened bolts in bolted-joints. By comparing electrical impedance signatures measured from a potentially damage structure with baseline data obtained from the pristine structure, the bolt loosening damage could be detected. An outlier analysis, using generalized extreme value (GEV) distribution, providing optimal decision boundaries, has been carried out for more systematic damage detection. Once the loosening damage was detected in the bolted joint, the external heater, which was bonded to the SMA washer, actuated the washer. Then, the heated SMA washer expanded axially and adjusted the bolt tension to restore the lost torque. Additionally, temperature variation due to the heater was compensated by applying the effective frequency shift (EFS) algorithm to improve the performance of the diagnostic results. An experimental study was conducted by integrating the piezoelectric material based structural health monitoring and the SMA-based active control function on a bolted joint, after which the performance of the smart 'self-monitoring and self-healing bolted joint system' was demonstrated.

Real-time structural damage detection using wireless sensing and monitoring system

  • Lu, Kung-Chun;Loh, Chin-Hsiung;Yang, Yuan-Sen;Lynch, Jerome P.;Law, K.H.
    • Smart Structures and Systems
    • /
    • v.4 no.6
    • /
    • pp.759-777
    • /
    • 2008
  • A wireless sensing system is designed for application to structural monitoring and damage detection applications. Embedded in the wireless monitoring module is a two-tier prediction model, the auto-regressive (AR) and the autoregressive model with exogenous inputs (ARX), used to obtain damage sensitive features of a structure. To validate the performance of the proposed wireless monitoring and damage detection system, two near full scale single-story RC-frames, with and without brick wall system, are instrumented with the wireless monitoring system for real time damage detection during shaking table tests. White noise and seismic ground motion records are applied to the base of the structure using a shaking table. Pattern classification methods are then adopted to classify the structure as damaged or undamaged using time series coefficients as entities of a damage-sensitive feature vector. The demonstration of the damage detection methodology is shown to be capable of identifying damage using a wireless structural monitoring system. The accuracy and sensitivity of the MEMS-based wireless sensors employed are also verified through comparison to data recorded using a traditional wired monitoring system.

A Hybrid Knowledge Model for Structural Monitoring and Diagnosis (구조물 모니터링 및 진단을 위한 지식모델의 개발)

  • 김성곤
    • Computational Structural Engineering
    • /
    • v.9 no.2
    • /
    • pp.163-171
    • /
    • 1996
  • A hybrid knowledge model which amalgamates an object-oriented modeling approach and logic programming implementation is presented for structural health monitoring and diagnosis of instrumented structures. Domain knowledge in structural monitoring and diagnosis is formalized and represented in a logic-based object-oriented modeling environment. The model and environment have been implemented and illustrated in the context of a laboratory case study of damage detection in a successively damaged steel structure.

  • PDF

Modeling of temperature distribution in a reinforced concrete supertall structure based on structural health monitoring data

  • Ni, Y.Q.;Ye, X.W.;Lin, K.C.;Liao, W.Y.
    • Computers and Concrete
    • /
    • v.8 no.3
    • /
    • pp.293-309
    • /
    • 2011
  • A long-term structural health monitoring (SHM) system comprising over 700 sensors of sixteen types has been implemented on the Guangzhou Television and Sightseeing Tower (GTST) of 610 m high for real-time monitoring of the structure at both construction and service stages. As part of this sophisticated SHM system, 48 temperature sensors have been deployed at 12 cross-sections of the reinforced concrete inner structure of the GTST to provide on-line monitoring via a wireless data transmission system. In this paper, the differential temperature profiles in the reinforced concrete inner structure of the GTST, which are mainly caused by solar radiation, are recognized from the monitoring data with the purpose of understanding the temperature-induced structural internal forces and deformations. After a careful examination of the pre-classified temperature measurement data obtained under sunny days and non-sunny days, common characteristic of the daily temperature variation is observed from the data acquired in sunny days. Making use of 60-day temperature measurement data obtained in sunny days, statistical patterns of the daily rising temperature and daily descending temperature are synthesized, and temperature distribution models of the reinforced concrete inner structure of the GTST are formulated using linear regression analysis. The developed monitoring-based temperature distribution models will serve as a reliable input for numerical prediction of the temperature-induced deformations and provide a robust basis to facilitate the design and construction of similar structures in consideration of thermal effects.

Inclinometer-based method to monitor displacement of high-rise buildings

  • Xiong, Hai-Bei;Cao, Ji-Xing;Zhang, Feng-Liang
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.1
    • /
    • pp.111-127
    • /
    • 2018
  • Horizontal displacement of high-rise building is an essential index for assessing the structural performance and safety. In this paper, a novel inclinometer-based method is proposed to address this issue and an algorithm based on three spline interpolation principle is presented to estimate the horizontal displacement of high-rise buildings. In this method, the whole structure is divided into different elements by different measured points. The story drift angle curve of each element is modeled as a three spline curve. The horizontal displacement can be estimated after integration of the story drift angle curve. A numerical example is designed to verify the proposed method and the result shows this method can effectively estimate the horizontal displacement with high accuracy. After that, this method is applied to a practical slender structure - Shanghai Tower. Nature frequencies identification and deformation monitoring are conducted from the signal of inclinometers. It is concluded that inclinometer-based technology can not only be used for spectrum analysis and modal identification, but also for monitoring deformation of the whole structure. This inclinometer-based technology provides a novel method for future structural health monitoring.

Risk identification, assessment and monitoring design of high cutting loess slope in heavy haul railway

  • Zhang, Qian;Gao, Yang;Zhang, Hai-xia;Xu, Fei;Li, Feng
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.1
    • /
    • pp.67-78
    • /
    • 2018
  • The stability of cutting slope influences the safety of railway operation, and how to identify the stability of the slope quickly and determine the rational monitoring plan is a pressing problem at present. In this study, the attribute recognition model of risk assessment for high cutting slope stability in the heavy haul railway is established based on attribute mathematics theory, followed by the consequent monitoring scheme design. Firstly, based on comprehensive analysis on the risk factors of heavy haul railway loess slope, collapsibility, tectonic feature, slope shape, rainfall, vegetation conditions, train speed are selected as the indexes of the risk assessment, and the grading criteria of each index is established. Meanwhile, the weights of the assessment indexes are determined by AHP judgment matrix. Secondly, The attribute measurement functions are given to compute attribute measurement of single index and synthetic attribute, and the attribute recognition model was used to assess the risk of a typical heavy haul railway loess slope, Finally, according to the risk assessment results, the monitoring content and method of this loess slope were determined to avoid geological disasters and ensure the security of the railway infrastructure. This attribute identification- risk assessment- monitoring design mode could provide an effective way for the risk assessment and control of heavy haul railway in the loess plateau.

Future of Ubiquitous Structural Health Monitoring for Infrastructure Management (유비쿼터스 사회기반구축 및 관리를 위한 건설계측기술의 미래)

  • Rhim Hong-Chul
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.63-68
    • /
    • 2006
  • As a part of efforts to enhance construction technology, it is essential to obtain competitive technology which is future-oriented. In this paper, the current status of structural health monitoring techniques is reviewed. Also, ubiquitous system is expected in its use for further development and applications in construction.

  • PDF

Building structural health monitoring using dense and sparse topology wireless sensor network

  • Haque, Mohammad E.;Zain, Mohammad F.M.;Hannan, Mohammad A.;Rahman, Mohammad H.
    • Smart Structures and Systems
    • /
    • v.16 no.4
    • /
    • pp.607-621
    • /
    • 2015
  • Wireless sensor technology has been opened up numerous opportunities to advanced health and maintenance monitoring of civil infrastructure. Compare to the traditional tactics, it offers a better way of providing relevant information regarding the condition of building structure health at a lower price. Numerous domestic buildings, especially longer-span buildings have a low frequency response and challenging to measure using deployed numbers of sensors. The way the sensor nodes are connected plays an important role in providing the signals with required strengths. Out of many topologies, the dense and sparse topologies wireless sensor network were extensively used in sensor network applications for collecting health information. However, it is still unclear which topology is better for obtaining health information in terms of greatest components, node's size and degree. Theoretical and computational issues arising in the selection of the optimum topology sensor network for estimating coverage area with sensor placement in building structural monitoring are addressed. This work is an attempt to fill this gap in high-rise building structural health monitoring application. The result shows that, the sparse topology sensor network provides better performance compared with the dense topology network and would be a good choice for monitoring high-rise building structural health damage.