• Title/Summary/Keyword: structural mechanism

Search Result 1,723, Processing Time 0.03 seconds

Structural damage detection based on Chaotic Artificial Bee Colony algorithm

  • Xu, H.J.;Ding, Z.H.;Lu, Z.R.;Liu, J.K.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.6
    • /
    • pp.1223-1239
    • /
    • 2015
  • A method for structural damage identification based on Chaotic Artificial Bee Colony (CABC) algorithm is presented. ABC is a heuristic algorithm with simple structure, ease of implementation, good robustness but with slow convergence rate. To overcome the shortcoming, the tournament selection mechanism is chosen instead of the roulette mechanism and chaotic search mechanism is also introduced. Residuals of natural frequencies and modal assurance criteria (MAC) are used to establish the objective function, ABC and CABC are utilized to solve the optimization problem. Two numerical examples are studied to investigate the efficiency and correctness of the proposed method. The simulation results show that the CABC algorithm can identify the local damage better compared with ABC and other evolutionary algorithms, even with noise corruption.

Some practical considerations in designing underground station structures for seismic loads

  • Gu, Jianzhong
    • Structural Engineering and Mechanics
    • /
    • v.54 no.3
    • /
    • pp.491-500
    • /
    • 2015
  • Under seismic loading, underground station structures behave differently from above ground structures. Underground structures do not require designated energy dissipation system for seismic loads. These structures are traditionally designed with shear or racking deformation capacity to accommodate the movement of the soil caused by shear waves. The free-field shear deformation method may not be suitable for the design of shallowly buried station structures with complex structural configurations. Alternatively, a station structure can develop rocking mechanisms either as a whole rigid body or as a portion of the structure with plastic hinges. With a rocking mechanism, station structures can be tilted to accommodate lateral shear deformation from the soil. If required, plastic hinges can be implemented to develop rocking mechanism. Generally, rocking structures do not expect significant seismic loads from surrounding soils, although the mechanism may result in significant internal forces and localized soil bearing pressures. This method may produce a reliable and robust design of station structures.

Simulation-based Jansen mechanism utilizing walking robot of the design and implementation in order to implement the best walking movement. (최적 보행 동작 구현을 위한 시뮬레이션 기반 Jansen Mechanism 활용 보행 로봇 설계 및 구현.)

  • Kim, Heechan;Kim, SeungHa
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.467-468
    • /
    • 2016
  • The importance of the recent manufacturing industry have been made to invest in a lot of assistance and human resource development at the national dimension in which to rise again. However Learned in actual school education kinetic, and the use to how product design structural knowledge, Often it feels vague unlikely whether it is possible to derive an optimal product. In this study, by using the simulation-based Jansen Mechanism designed a walking robot, after optimization of the numerical consideration when designing for optimum walking motion, through simulation through the actual production resulting numerical information is examined whether valid. In addition, through the actual production was walking robot, to verify the validity of the simulation-based design.

  • PDF

Enhanced generalized modeling method for compliant mechanisms: Multi-Compliant-Body matrix method

  • Lim, Hyunho;Choi, Young-Man
    • Structural Engineering and Mechanics
    • /
    • v.82 no.4
    • /
    • pp.503-515
    • /
    • 2022
  • The multi-rigid-body matrix method (MRBMM) is a generalized modeling method for obtaining the displacements, forces, and dynamic characteristics of a compliant mechanism without performing inner-force analysis. The method discretizes a compliant mechanism of any type into flexure hinges and rigid bodies by implementing a multi-body mass-spring model using coordinate transformations in a matrix form. However, in this method, the deformations of bodies that are assumed to be rigid are inherently omitted. Consequently, it may yield erroneous results in certain mechanisms. In this paper, we present a multi-compliant-body matrix-method (MCBMM) that considers a rigid body as a compliant element, while retaining the generalized framework of the MRBMM. In the MCBMM, a rigid body in the MRBMM is segmented into a certain number of body nodes and flexure hinges. The proposed method was verified using two examples: the first (an XY positioning stage) demonstrated that the MCBMM outperforms the MRBMM in estimating the static deformation and dynamic mode. In the second example (a bridge-type displacement amplification mechanism), the MCBMM estimated the displacement amplification ratio more accurately than several previously proposed modeling methods.

A study on the Properties for Structural Behavior of High-Performance Concrete Filled Square Steel Tube Columns -The Behavior Properties by Loading Conditions- (고성능 콘크리트를 충전한 각형강관 기둥의 구조적 거동 특성에 관한 연구 -재하조건별 거동특성-)

  • Park, Jung Min;Lee, Sung Jo;Kim, Wha Jung
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.2 s.35
    • /
    • pp.177-186
    • /
    • 1998
  • The concrete filled steel tubular column have to superior in compressive load carrying capacity, compared with same section typed hollow steel tube column, and have many excellent structural properties, such as stiffness improvement by filled concrete, improvement of ductility by reinforced effect of local buckling, and the like. However, it has not clear the effect of interaction between steel tube and filled concrete, stress portion ratio and fracture mechanism of concrete. This study investigated to structural properties for high strength concrete filled steel tube column by loading conditions through a series of experiments. Especially, this study investigated the properties of structural behaviors for concrete filled steel tube column stress ratio by loading conditions and failure mechanism of filled concrete.

  • PDF

Subspace search mechanism and cuckoo search algorithm for size optimization of space trusses

  • Kaveh, A.;Bakhshpoori, T.
    • Steel and Composite Structures
    • /
    • v.18 no.2
    • /
    • pp.289-303
    • /
    • 2015
  • This study presents a strategy so-called Subspace Search Mechanism (SSM) for reducing the computational time for convergence of population based metaheusristic algorithms. The selected metaheuristic for this study is the Cuckoo Search algorithm (CS) dealing with size optimization of trusses. The complexity of structural optimization problems can be partially due to the presence of high-dimensional design variables. SSM approach aims to reduce dimension of the problem. Design variables are categorized to predefined groups (subspaces). SSM focuses on the multiple use of the metaheuristic at hand for each subspace. Optimizer updates the design variables for each subspace independently. Updating rules require candidate designs evaluation. Each candidate design is the assemblage of responsible set of design variables that define the subspace of interest. SSM is incorporated to the Cuckoo Search algorithm for size optimizing of three small, moderate and large space trusses. Optimization results indicate that SSM enables the CS to work with less number of population (42%), as a result reducing the time of convergence, in exchange for some accuracy (1.5%). It is shown that the loss of accuracy can be lessened with increasing the order of complexity. This suggests its applicability to other algorithms and other complex finite element-based engineering design problems.

Study on mechanism of macro failure and micro fracture of local nearly horizontal stratum in super-large section and deep buried tunnel

  • Li, Shu-cai;Wang, Jian-hua;Chen, Wei-zhong;Li, Li-ping;Zhang, Qian-qing;He, Peng
    • Geomechanics and Engineering
    • /
    • v.11 no.2
    • /
    • pp.253-267
    • /
    • 2016
  • The stability of surrounding rock will be poor when the tunnel is excavated through nearly horizontal stratum. In this paper, the instability mechanism of local nearly horizontal stratum in super-large section and deep buried tunnel is revealed by the analysis of the macro failure and micro fracture. A structural model is proposed to explain the mechanics of surrounding rock collapse under the action of stress redistribution and shed light on the macroscopic analytical approach of the stability of surrounding rock. Then, some highly effective formulas applied in the tunnel engineering are developed according to the theory of mixed-mode micro fracture. And well-documented field case is made to demonstrate the effectiveness and accuracy of the proposed analytical methods of mixed-mode fracture. Meanwhile, in order to make the more accurate judgment about yield failure of rock mass, a series of comprehensive failure criteria are formed. In addition, the relationship between the nonlinear failure criterion and $K_I$ and $K_{II}$ of micro fracture is established to make the surrounding rock failure criterion more comprehensive and accurate. Further, the influence of the parameters related to the tension-shear mixed-mode fracture and compression-shear mixed-mode fracture on the propagation of rock crack is analyzed. Results show that ${\sigma}_3$ changes linearly with the change of ${\sigma}_1$. And the change rate is related to ${\beta}$, angle between the cracks and ${\sigma}_1$. The proposed simple analytical approach is economical and efficient, and suitable for the analysis of local nearly horizontal stratum in super-large section and deep buried tunnel.

Theoretical Analyses on Actuator Stiffness and Structural Stiffness of Non-redundant and Redundant Symmetric 5R Parallel Mechanisms (비과구동, 과구동 대칭형 5R 병렬기구의 구동 및 구조 강성의 이론적 해석)

  • Jin, Sang-Rok;Kim, Jong-Won;Seo, Tae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.9
    • /
    • pp.971-977
    • /
    • 2012
  • Redundant actuated parallel kinematic machines (PKMs) have been widely researched to increase stiffness of PKMs. This paper presents theoretical analyses on the stiffness of non-redundant and redundant actuated PKM. Stiffness of each mechanism is defined by summation of actuator and structural stiffness; the actuator stiffness is determined from displacements of actuators, and the structural stiffness is determined from deformations of links by external forces. Calculated actuator and structural stiffness of non-redundant PKM show same distribution in entire workspace. On the contrary, the actuator and the structural stiffness of a redundant PKM has very different distribution in the workspace; so, we conclude the structural stiffness of redundant PKM should be considered to design the redundant PKM. The results can be used to design and analyze non-redundant and redundant PKMs.

Design of steel and composite beams with web openings - Verification using finite element method

  • Chung, K.F.;Ko, C.H.;Wang, A.J.
    • Steel and Composite Structures
    • /
    • v.5 no.2_3
    • /
    • pp.203-233
    • /
    • 2005
  • This paper presents the findings of a design development project for perforated beams fully integrated with building services. A unified design approach for both steel and composite beams with large rectangular web openings is proposed which is based on plastic design methods and formulated in accordance with analytical structural design principles. Moreover, finite element models are established after careful calibration against test data, and comparison on the predicted ultimate loads of two composite beams with rectangular web openings from the finite element models and the proposed design method is also presented. It is demonstrated that the proposed design method is able to predict the ultimate loads of composite beams with rectangular web openings against 'Vierendeel' mechanism satisfactorily.