• Title/Summary/Keyword: structural materials

Search Result 5,861, Processing Time 0.039 seconds

Study on Synthesis and Characterization of Magnetic ZnFe2O4@SnO2@TiO2 Core-shell Nanoparticles (자성을 가진 ZnFe2O4@SnO2@TiO2 Core-Shell Nanoparticles의 합성과 특성에 관한 연구)

  • Yoo, Jeong-yeol;Park, Seon-A;Jung, Woon-Ho;Park, Seong-Min;Tae, Gun-Sik;Kim, Jong-Gyu
    • Applied Chemistry for Engineering
    • /
    • v.29 no.6
    • /
    • pp.710-715
    • /
    • 2018
  • In this study, $ZnFe_2O_4@SnO_2@TiO_2$ core-shell nanoparticles (NPs), a photocatalytic material with magnetic properties, were synthesized through a three-step process. Structural properties were investigated using X-ray diffraction (XRD) analysis. It was confirmed that $ZnFe_2O_4$ of the spinel, $SnO_2$ of the tetragonal and $TiO_2$ of the anatase structure were synthesized. The magnetic properties of synthesized materials were studied by a vibrating sample magnetometer (VSM). The saturation magnetization value of $ZnFe_2O_4$, a core material, was confirmed at 33.084 emu/g. As a result of the formation of $SnO_2$ and $TiO_2$ layers, the magnetism due to the increase in thickness was reduced by 33% and 40%, respectively, but sufficient magnetic properties were reserved. The photocatalytic efficiency of synthesized materials was measured using methylene blue (MB). The efficiency of the core material was about 4.2%, and as a result of the formation of $SnO_2$ and $TiO_2$ shell, it increased to 73% and 96%, respectively while maintaining a high photocatalytic efficiency. In addition, the antibacterial activity was validated via the inhibition zone by using E. Coli and S. Aureus. The formation of shells resulted in a wider inhibition zone, which is in good agreement with photocatalytic efficiency measurements.

A Study on the 3D Measurement Data Application: The Detailed Restoration Modeling of Mireuksajiseoktap (미륵사지석탑 정밀복원모형 제작을 중심으로 한 3차원 실측데이터의 활용 연구)

  • Moon, Seang Hyen
    • Korean Journal of Heritage: History & Science
    • /
    • v.44 no.2
    • /
    • pp.76-95
    • /
    • 2011
  • After dismantled, Mireuksajiseoktap(Stone pagoda of Mireuksa Templesite) is being in the stage of restoration design. Now, different ways - producing restoration model, a 3 dimension simulation - have been requested to make more detailed and clearer restoration design prior to confirmation of its restoration design and actual restoration carry-out. This thesis proposes the way to build the detailed model for better restoration plan using extensively-used Reverse Engineering technique and Rapid Prototyping. It also introduces each stage such as a 3-dimension actual measurement, building database, a 3-dimension simulation etc., to build a desirable model. On the top of that, this thesis reveals that after dismantled, MIruksaji stone pagoda's interior and exterior were not constructed into pieces but wholeness, so that its looks can be grasped in more virtually and clearly. Secondly, this thesis makes a 3-dimension study on the 2-dimension design possible by acquiring basic materials about a 3-dimension design. Thirdly, the individual feature of each member like the change of member location can be comprehended, considering comparing analysis and joint condition of member. Lastly, in the structural perspective this thesis can be used as reference materials for structure reinforcement design by grasping destructed aspects of stone pagoda and weak points of the structure. In dismantlement-repair and restoration work of cultural properties that require delicate attention and exactness, there may be evitable errors on time and space in building reinforcement and restoration design based on a 2-dimension plan. Especially, the more complicate and bigger the subject is, the more difficult an analysis about the status quo and its delicate design are. A series of pre-review, based on the 3-dimension data according to actual measurement, can be one of the effective way to minimize the possibility that errors about time - space happen by building more delicate plan and resolving difficulties.

A Study for Mechanical Property for A516-60, A283-C, A285-C and SB410 materials under Low Temperature (저온영역에서의 A516-60, A283-C, A285-C, SB410 소재 특성 평가)

  • Oh, Jung-Soo;Lee, Hee-Bum;Lee, Bong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.405-411
    • /
    • 2019
  • In this study, tensile tests were carried out on materials (A516-60, A283-C, A285-C, and SB410) for structural and pressure vessels at temperatures of $20^{\circ}C$, $-20^{\circ}C$, and $-40^{\circ}C$, and the changes in the mechanical properties were analyzed. Compared to the results at $20^{\circ}C$, the average yield stress increased by 6.4% and 7.5% at $-20^{\circ}C$ and $-40^{\circ}C$ for A516-60, while the average tensile stress increased by 1.3% and 4.1%, respectively. The average elongation decreased by 4.7% and 20.4% at these temperatures. In the case of A283-C, the average yield stress increased 8.8% and 9.8%, the average tensile stress increased by 4.1% and 5.9%, and the average elongation rate decreased by 7.4% and 9.9% at $-20^{\circ}C$ and $-40^{\circ}C$, respectively. For A285-C, the average yield stress increased by 1.8% and 8.6%, and the average tensile stress increased by 2.6% and 5.3%, respectively, but there was little change in the average elongation. Finally, for SB410, the average yield stress increased by 7.1% and 11.8%, the average tensile stress increased by 4.3% and 5.5%, but the average elongation rate decreased by 8.7% and 13.5%, respectively.

Investigation of Viscoelastic Properties of EPDM/PP Thermoplastic Vulcanizates for Reducing Innerbelt Weatherstrip Squeak Noise of Electric Vehicles (전기차 인너벨트 웨더스트립용 EPDM/PP Thermoplastic Vulcanizates 재료설계인자에 따른 점탄성과 글라스 마찰 소음 상관관계 연구)

  • Cho, Seunghyun;Yoon, Bumyong;Lee, Sanghyun;Hong, Kyoung Min;Lee, Sang Hyun;Suhr, Jonghwan
    • Composites Research
    • /
    • v.34 no.3
    • /
    • pp.192-198
    • /
    • 2021
  • Due to enormous market growing of electric vehicles without combustion engine, reducing unwanted BSR (buzz, squeak, and rattle) noise is highly demanded for vehicle quality and performance. Particularly, innerbelt weatherstrips which not only block wind noise, rain, and dust from outside, but also reduce noise and vibration of door glass and vehicle are required to exhibit high damping properties for improved BSR performance of the vehicle. Thermoplastic elastomers (TPEs), which can be recycled and have lighter weight than thermoset elastomers, are receiving much attention for weatherstrip material, but TPEs exhibit low material damping and compression set causing frictional noise and vibration between the door glass and the weatherstrip. In this study, high damping EPDM (ethylene-propylene-diene monomer)/PP (polypropylene) thermoplastic vulcanizates (TPV) were investigated by varying EPDM/PP ratio and ENB (ethylidene norbornene) fraction in EPDM. Viscoelastic properties of TPV materials were characterized by assuming that the material damping is directly related to the viscoelasticity. The optimum material damping factor (tanδ peak 0.611) was achieved with low PP ratio (14 wt%) and high ENB fraction (8.9 wt%), which was increased by 140% compared to the reference (tanδ 0.254). The improved damping is believed due to high fraction of flexible EPDM chains and higher interfacial slippage area of EPDM particles generated by increasing ENB fraction in EPDM. The stick-slip test was conducted to characterize frictional noise and vibration of the TPV weatherstrip. With improved TPV material damping, the acceleration peak of frictional vibration decreased by about 57.9%. This finding can not only improve BSR performance of electric vehicles by designing material damping of weatherstrips but also contribute to various structural applications such as urban air mobility or aircrafts, which require lightweight and high damping properties.

Study on Ti-doped LiNi0.6Co0.2Mn0.2O2 Cathode Materials for High Stability Lithium Ion Batteries (고안정성 리튬이온전지 양극활물질용 Ti 치환형 LiNi0.6Co0.2Mn0.2O2 연구)

  • Jeon, Young Hee;Lim, Soo A
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.4
    • /
    • pp.120-132
    • /
    • 2021
  • Although the development of high-Nickel is being actively carried out to solve the capacity limitation and the high price of raw cobalt due to the limitation of high voltage use of the existing LiCoO2, the deterioration of the battery characteristics due to the decrease in structural stability and increase of the Ni content. It is an important cause of delaying commercialization. Therefore, in order to increase the high stability of the Ni-rich ternary cathod material LiNi0.6Co0.2Mn0.2O2, precursor Ni0.6Co0.2Mn0.2-x(OH)2/xTiO2 was prepared using a nanosized TiO2 suspension type source for uniform Ti substitution in the precursor. It was mixed with Li2CO3, and after heating, the cathode active material LiNi0.6Co0.2Mn0.2-xTixO2 was synthesized, and the physical properties according to the Ti content were compared. Through FE-SEM and EDS mapping analysis, it was confirmed that a positive electrode active material having a uniform particle size was prepared through Ti-substituted spherical precursor and Particle Size Analyzer and internal density and strength were increased, XRD structure analysis and ICP-MS quantitative analysis confirmed that the capacity was effectively maintained even when the Ti-substituted positive electrode active material was manufactured and charging and discharging were continued at high temperature and high voltage.

Conservation Status, Construction Type and Stability Considerations for Fortress Wall in Hongjuupseong (Town Wall) of Hongseong, Korea (홍성 홍주읍성 성벽의 보존상태 및 축성유형과 안정성 고찰)

  • Park, Junhyoung;Lee, Chanhee
    • Korean Journal of Heritage: History & Science
    • /
    • v.51 no.3
    • /
    • pp.4-31
    • /
    • 2018
  • It is difficult to ascertain exactly when the Hongjuupseong (Town Wall) was first constructed, due to it had undergone several times of repair and maintenance works since it was piled up newly in 1415, when the first year of the reign of King Munjong (the 5th King of the Joseon Dynasty). Parts of its walls were demolished during the Japanese occupation, leaving the wall as it is today. Hongseong region is also susceptible to historical earthquakes for geological reasons. There have been records of earthquakes, such as the ones in 1978 and 1979 having magnitudes of 5.0 and 4.0, respectively, which left part of the walls collapsed. Again, in 2010, heavy rainfall destroyed another part of the wall. The fortress walls of the Hongjuupseong comprise various rocks, types of facing, building methods, and filling materials, according to sections. Moreover, the remaining wall parts were reused in repair works, and characteristics of each period are reflected vertically in the wall. Therefore, based on the vertical distribution of the walls, the Hongjuupseong was divided into type I, type II, and type III, according to building types. The walls consist mainly of coarse-grained granites, but, clearly different types of rocks were used for varying types of walls. The bottom of the wall shows a mixed variety of rocks and natural and split stones, whereas the center is made up mostly of coarse-grained granites. For repairs, pink feldspar granites was used, but it was different from the rock variety utilized for Suguji and Joyangmun Gate. Deterioration types to the wall can be categorized into bulging, protrusion of stones, missing stones at the basement, separation of framework, fissure and fragmentation, basement instability, and structural deformation. Manually and light-wave measurements were used to check the amount and direction of behavior of the fortress walls. A manual measurement revealed the sections that were undergoing structural deformation. Compared with the result of the light-wave measurement, the two monitoring methods proved correlational. As a result, the two measuring methods can be used complementarily for the long-term conservation and management of the wall. Additionally, the measurement system must be maintained, managed, and improved for the stability of the Hongjuupseong. The measurement of Nammunji indicated continuing changes in behavior due to collapse and rainfall. It can be greatly presumed that accumulated changes over the long period reached the threshold due to concentrated rainfall and subsequent behavioral irregularities, leading to the walls' collapse. Based on the findings, suggestions of the six grades of management from 0 to 5 have been made, to manage the Hongjuupseong more effectively. The applied suggested grade system of 501.9 m (61.10%) was assessed to grade 1, 29.5 m (3.77%) to grade 2, 10.4 m (1.33%) to grade 3, 241.2 m (30.80%) and grade 4. The sections with grade 4 concentrated around the west of Honghwamun Gate and the east of the battlement, which must be monitored regularly in preparation for a potential emergency. The six-staged management grade system is cyclical, where after performing repair and maintenance works through a comprehensive stability review, the section returned to grade 0. It is necessary to monitor thoroughly and evaluate grades on a regular basis.

A Study on the Present Condition and Improvement of Cultural Heritage Management in Seoul - Based on the Results of Regular Surveys (2016~2018) - (서울특별시 지정문화재 관리 현황 진단 및 개선방안 연구 - 정기조사(2016~2018) 결과를 중심으로 -)

  • Cho, Hong-seok;Suh, Hyun-jung;Kim, Ye-rin;Kim, Dong-cheon
    • Korean Journal of Heritage: History & Science
    • /
    • v.52 no.2
    • /
    • pp.80-105
    • /
    • 2019
  • With the increasing complexity and irregularity of disaster types, the need for cultural asset preservation and management from a proactive perspective has increased as a number of cultural properties have been destroyed and damaged by various natural and humanistic factors. In consideration of these circumstances, the Cultural Heritage Administration enacted an Act in December 2005 to enforce the regular commission of surveys for the systematic preservation and management of cultural assets, and through a recent revision of this Act, the investigation cycle has been reduced from five to three years, and the object of regular inspections has been expanded to cover registered cultural properties. According to the ordinance, a periodic survey of city- or province-designated heritage is to be carried out mainly by metropolitan and provincial governments. The Seoul Metropolitan Government prepared a legal basis for commissioning regular surveys under the Seoul Special City Cultural Properties Protection Ordinance 2008 and, in recognition of the importance of preventive management due to the large number of cultural assets located in the city center and the high demand for visits, conducted regular surveys of the entire city-designated cultural assets from 2016 to 2018. Upon the first survey being completed, it was considered necessary to review the policy effectiveness of the system and to conduct a comprehensive review of the results of the regular surveys that had been carried out to enhance the management of cultural assets. Therefore, the present study examined the comprehensive management status of the cultural assets designated by the Seoul Metropolitan Government for three years (2016-2018), assessing the performance and identifying limitations. Additionally, ways to improve it were sought, and a DB establishment plan for the establishment of an integrated management system under the auspices of the Seoul Metropolitan Government was proposed. Specifically, survey forms were administered under the Guidelines for the Operation of Periodic Surveys of National Designated Cultural Assets; however, the types of survey forms were reclassified and further subdivided in consideration of the characteristics of the designated cultural assets, and manuals were developed for consistent and specific information technologies in respect of the scope and manner of the survey. Based on this analysis, it was confirmed that 401 cases (77.0%) out of 521 cases were generally well preserved; however, 102 cases (19.6%) were found to require special measures such as attention, precision diagnosis, and repair. Meanwhile, there were 18 cases (3.4%) of unsurveyed cultural assets. These were inaccessible to the investigation at this time due to reasons such as unknown location or closure to the public. Regarding the specific types of cultural assets, among a total of 171 cultural real estate properties, 63 cases (36.8%) of structural damage were caused by the failure and elimination of members, and 73 cases (42.7%) of surface area damage were the result of biological damage. Almost all plants and geological earth and scenic spots were well preserved. In the case of movable cultural assets, 25 cases (7.1%) among 350 cases were found to have changed location, and structural damage and surface area damage was found according to specific material properties, excluding ceramics. In particular, papers, textiles, and leather goods, with material properties that are vulnerable to damage, were found to have greater damage than those of other materials because they were owned and managed by individuals and temples. Thus, it has been confirmed that more proactive management is needed. Accordingly, an action plan for the comprehensive preservation and management status check shall be developed according to management status and urgency, and the project promotion plan and the focus management target should be selected and managed first. In particular, concerning movable cultural assets, there have been some cases in which new locations have gone unreported after changes in ownership (management); therefore, a new system is required to strengthen the obligation to report changes in ownership (management) or location. Based on the current status diagnosis and improvement measures, it is expected that the foundation of a proactive and efficient cultural asset management system can be realized through the establishment of an effective mid- to long-term database of the integrated management system pursued by the Seoul Metropolitan Government.

APPLICATION OF FUZZY SET THEORY IN SAFEGUARDS

  • Fattah, A.;Nishiwaki, Y.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1051-1054
    • /
    • 1993
  • The International Atomic Energy Agency's Statute in Article III.A.5 allows it“to establish and administer safeguards designed to ensure that special fissionable and other materials, services, equipment, facilities and information made available by the Agency or at its request or under its supervision or control are not used in such a way as to further any military purpose; and to apply safeguards, at the request of the parties, to any bilateral or multilateral arrangement, or at the request of a State, to any of that State's activities in the field of atomic energy”. Safeguards are essentially a technical means of verifying the fulfilment of political obligations undertaken by States and given a legal force in international agreements relating to the peaceful uses of nuclear energy. The main political objectives are: to assure the international community that States are complying with their non-proliferation and other peaceful undertakings; and to deter (a) the diversion of afeguarded nuclear materials to the production of nuclear explosives or for military purposes and (b) the misuse of safeguarded facilities with the aim of producing unsafeguarded nuclear material. It is clear that no international safeguards system can physically prevent diversion. The IAEA safeguards system is basically a verification measure designed to provide assurance in those cases in which diversion has not occurred. Verification is accomplished by two basic means: material accountancy and containment and surveillance measures. Nuclear material accountancy is the fundamental IAEA safeguards mechanism, while containment and surveillance serve as important complementary measures. Material accountancy refers to a collection of measurements and other determinations which enable the State and the Agency to maintain a current picture of the location and movement of nuclear material into and out of material balance areas, i. e. areas where all material entering or leaving is measurab e. A containment measure is one that is designed by taking advantage of structural characteristics, such as containers, tanks or pipes, etc. To establish the physical integrity of an area or item by preventing the undetected movement of nuclear material or equipment. Such measures involve the application of tamper-indicating or surveillance devices. Surveillance refers to both human and instrumental observation aimed at indicating the movement of nuclear material. The verification process consists of three over-lapping elements: (a) Provision by the State of information such as - design information describing nuclear installations; - accounting reports listing nuclear material inventories, receipts and shipments; - documents amplifying and clarifying reports, as applicable; - notification of international transfers of nuclear material. (b) Collection by the IAEA of information through inspection activities such as - verification of design information - examination of records and repo ts - measurement of nuclear material - examination of containment and surveillance measures - follow-up activities in case of unusual findings. (c) Evaluation of the information provided by the State and of that collected by inspectors to determine the completeness, accuracy and validity of the information provided by the State and to resolve any anomalies and discrepancies. To design an effective verification system, one must identify possible ways and means by which nuclear material could be diverted from peaceful uses, including means to conceal such diversions. These theoretical ways and means, which have become known as diversion strategies, are used as one of the basic inputs for the development of safeguards procedures, equipment and instrumentation. For analysis of implementation strategy purposes, it is assumed that non-compliance cannot be excluded a priori and that consequently there is a low but non-zero probability that a diversion could be attempted in all safeguards ituations. An important element of diversion strategies is the identification of various possible diversion paths; the amount, type and location of nuclear material involved, the physical route and conversion of the material that may take place, rate of removal and concealment methods, as appropriate. With regard to the physical route and conversion of nuclear material the following main categories may be considered: - unreported removal of nuclear material from an installation or during transit - unreported introduction of nuclear material into an installation - unreported transfer of nuclear material from one material balance area to another - unreported production of nuclear material, e. g. enrichment of uranium or production of plutonium - undeclared uses of the material within the installation. With respect to the amount of nuclear material that might be diverted in a given time (the diversion rate), the continuum between the following two limiting cases is cons dered: - one significant quantity or more in a short time, often known as abrupt diversion; and - one significant quantity or more per year, for example, by accumulation of smaller amounts each time to add up to a significant quantity over a period of one year, often called protracted diversion. Concealment methods may include: - restriction of access of inspectors - falsification of records, reports and other material balance areas - replacement of nuclear material, e. g. use of dummy objects - falsification of measurements or of their evaluation - interference with IAEA installed equipment.As a result of diversion and its concealment or other actions, anomalies will occur. All reasonable diversion routes, scenarios/strategies and concealment methods have to be taken into account in designing safeguards implementation strategies so as to provide sufficient opportunities for the IAEA to observe such anomalies. The safeguards approach for each facility will make a different use of these procedures, equipment and instrumentation according to the various diversion strategies which could be applicable to that facility and according to the detection and inspection goals which are applied. Postulated pathways sets of scenarios comprise those elements of diversion strategies which might be carried out at a facility or across a State's fuel cycle with declared or undeclared activities. All such factors, however, contain a degree of fuzziness that need a human judgment to make the ultimate conclusion that all material is being used for peaceful purposes. Safeguards has been traditionally based on verification of declared material and facilities using material accountancy as a fundamental measure. The strength of material accountancy is based on the fact that it allows to detect any diversion independent of the diversion route taken. Material accountancy detects a diversion after it actually happened and thus is powerless to physically prevent it and can only deter by the risk of early detection any contemplation by State authorities to carry out a diversion. Recently the IAEA has been faced with new challenges. To deal with these, various measures are being reconsidered to strengthen the safeguards system such as enhanced assessment of the completeness of the State's initial declaration of nuclear material and installations under its jurisdiction enhanced monitoring and analysis of open information and analysis of open information that may indicate inconsistencies with the State's safeguards obligations. Precise information vital for such enhanced assessments and analyses is normally not available or, if available, difficult and expensive collection of information would be necessary. Above all, realistic appraisal of truth needs sound human judgment.

  • PDF

Flower and Microspore Development in 'Campbell Early' (Vitis labruscana) and 'Tamnara' (V. spp.) Grapes ('캠벨얼리'와 '탐나라' 포도의 꽃과 소포자 발달)

  • Yim, Bomi;Mun, Jeong-Hwan;Jeong, Young-Min;Hur, Youn Young;Yu, Hee-Ju
    • Horticultural Science & Technology
    • /
    • v.33 no.3
    • /
    • pp.420-428
    • /
    • 2015
  • The majority of cultivated varieties of grape have perfect flowers that are clustered in an individual inflorescence. Grape flower has a single pistil, five stamens, a protective flower cap (calyptra), and a calyx. After fertilization, an individual flower develops into a single berry. Although there are a number of reported studies focusing on berry formation, berry enlargement, and sugar accumulation in grape, the morphological studies of flower, including gametophyte morphogenesis and structural change in floral organs, have not yet been studied in detail. In this study, we investigated the flower structure and development characteristics of grape using microscopy and defined the floral development stages 9 to 13 based on microspore or male gametophyte development stage from tetrad to mature pollen. We used seeded diploid table grapes 'Campbell Early' (Vitis labruscana) and 'Tamnara' (V. spp.) as plant materials. At floral development stage 9, pollen mother cells develop to tetrads. During floral development stages 10 to 11, unicellular microspore develop to mid bicellular pollen. At the end of floral stage 12, male gametophyte develops to mature tricelluar pollen. In floral stage 13, the flower cap falls off and flower bud opens. During floral development stages 9 to 12, there were no major changes in calyx length, whereas the length of the flower cap continuously increased. The flower cap-to-calyx length ratio was 2.0, 3.0, 4.5, and 6.5 at floral stages 9, 10, 11, and 12, respectively. The flower cap-to-calyx length ratio was consistent in the two grape cultivars, suggesting that the ratio is a morphological character representing floral development stage. This study provides a reference for determining floral development stage of the two grape cultivars. It will be useful for the determination of optimum time for microspore culture needed to generate doubled haploid lines and appropriate gibberellic acid treatment needed to induce parthenocarpic fruit development in 'Tamnara' grape.

Structural Analysis of Concrete-filled FRP Tube Dowel Bar for Jointed Concrete Pavements (콘크리트 포장에서 FRP 튜브 다웰바의 역학적 특성 분석)

  • Park, Jun-Young;Lee, Jae-Hoon;Sohn, Dueck-Su
    • International Journal of Highway Engineering
    • /
    • v.13 no.3
    • /
    • pp.21-30
    • /
    • 2011
  • As well known, dowel bars are used to transfer traffic load acting on one edge to another edge of concrete slab in concrete pavement system. The dowel bars widely used in South Korea are round shape steel bar and they shows satisfactory performance under bending stress which is developed by repetitive traffic loading and environment loading. However, they are not invulnerable to erosion that may be caused by moisture from masonry joint or bottom of the pavement system. Especially, the erosion could rapidly progress with saline to prevent frost of snow in winter time. The problem under this circumstance is that the erosion not only drops strength of the steel dower bar but also comes with volume expansion of the steel dowel bar which can reduce load transferring efficiency of the steel dowel bar. To avoid this erosion problem in reasonable expenses, dowers bars with various materials are being developed. Fiber reinforced plastic(FRP) dower that is presented in this paper is suggested as an alternative of the steel dowel bar and it shows competitive resistance against erosion and tensile stress. The FRP dowel bar is developed in tube shape and is filled with high strength no shrinkage. Several slab thickness designs with the FRP dowel bars are performed by evaluating bearing stress between the dowel bar and concrete slab. To calculated the bearing stresses, theoretical formulation and finite element method(FEM) are utilized with material properties measured from laboratory tests. The results show that both FRP tube dowel bars with diameters of 32mm and 40mm satisfy bearing stress requirement for dowel bars. Also, with consideration that lean concrete is typical material to support concrete slab in South Korea, which means low load transfer efficiency and, therefore, low bearing stress, the FRP tube dowel bar can be used as a replacement of round shape steel bar.