• Title/Summary/Keyword: structural joints

Search Result 978, Processing Time 0.02 seconds

Dynamic Behaviour of Masonry inFilled Reinforced Concrete Frames with Non-Seismic Details (진동대실험을 통한 비내진상세를 가지는 RC 골조의 조적채움벽 유무에 따른 동적 거동 평가)

  • Baek, Eun-Rim;Kim, Kyung-Min;Cheon, Ju-Hyun;Oh, Sang-Hoon;Lee, Sang-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.121-129
    • /
    • 2017
  • In this paper, the shake table test for the masonry infilled reinforced concrete frame with non-seismic details was carried out in order to evaluate its dynamic behaviour and damage under seismic condition. The tested specimens were the RC frame and the masonry infilled RC frame and the dynamic characteristics, such as a resonant period, acceleration response, displacement response and base shear force response, were compared between them. As a result of the shake table test, RC frame specimen had flexural cracks at the top and bottom of the column and shear cracks at the joints. In the case of masonry infilled RC frame, the damage of the frame was relatively minor but the sliding cracks and diagonal shear cracks on the masonry wall were severe at the final excitation. The resonant period of infilled RC frame specimen was shorter than that of the RC frame specimen because the masonry infill contributed to increase the stiffness. The maximum displacement response of the infilled RC frame specimen was decreased by about 20% than the RC frame specimen. It was analyzed that the masonry infill wall applied in this study contributed to increase the lateral strength of the RC frame with non - seismic detail by about 2.2 times and the stiffness by about 1.6 times.

Experimental Study for Earthquake and Subsidence-resistant Performance Evaluation of iPVC Buried Water Pipe (iPVC 매립 상수도관의 내진 성능 및 내침하 성능 평가를 위한 시험적 연구)

  • Jeon, Bub-Gyu;Chang, Sung-Jin;Kim, Jae-Bong;Ju, Bu-Seog
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.16-23
    • /
    • 2020
  • Water pipes are important facilities and consist of pipes of various specifications and materials. The annual average number of earthquakes in Korea is steadily increasing. Therefore, in case of the water pipe, it is estimated necessary to prepare for earthquakes. Damages to the water pipe by the earthquake can cause problems such as water supply and fire suppression, and cause damage to life and property. In Korea, however, it is difficult to find examples of seismic performance evaluation of water pipes based on experimental study. Damage to the water pipes by the earthquake is caused by the displacement-controlled behavior of the ground which is the liquifaction and fault lines. Especially, The damage to the water pipes by the earthquake is concentrated on the joint of the pipe. In particular, piping less than 200mm in diameter was found to be dangerous. Thus, in this study, the seismic and settlement performance of iPVC buried water pipes with fixed joints with a clamp of 150mm was evaluated with a test approach.

Analysis of Chloride Ion Penetration Properties into Concrete on Road Facilities Depending on the Deterioration Environments (국도 상 도로시설물 대상 열화환경 조건 별 콘크리트 염화물 침투 특성 분석)

  • Min, Jiyoung;Lee, Jong-Suk;Lee, Tack-gon;Cha, Ki-Hyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.102-113
    • /
    • 2021
  • The deterioration environments caused by de-icing salt and airborne chlorides in the seashore, evaluated in the "Detailed guideline for safety and management practice of facilities (performance evaluation)", were reviewed in terms of penetrated chlorides into concrete on various road facilities. Target concrete structures, in this study, were 4 concrete barriers in Gangwon area, 3 concrete barriers and 1 retaining wall in Busan area, and 4 bridges in Gangwon-do, Seoul, Gyeonggi-do, and Busan. The deterioration environments were classified into three categories: direct and indirect de-icing salt attack, and airborne salt attack depending on the distance to seashore and the height of pier, and the penetrated chlorides in to concrete were analyzed. The results showed that (1) the regional deterioration environments were clearly classified by de-icing salt sprayed days (snowfall days), (2) the penetrated chlorides increased significantly when leakage occurred through slabs or expansion joints, and (3) the airborne chlorides affected to a height of 20 m concrete in the seashore, Busan. From these, it could be confirmed that the chloride ion penetration properties depend on the exposed aging environment, member location and height, and deterioration status, even on the same structure, so the selection of target members and location is very important in the inspection and maintenance. If the database of penetrated chlorides properties in various deterioration environments is constructed, it is expected that the proactive durability management on concrete structures will be possible in the field.

Assessment of Structural Soundness and Joint Load of the Rotorcraft External Fuel Tank by Sloshing Movement (슬로싱 운동에 의한 회전익항공기 외부연료탱크 체결부 하중 및 구조건전성 평가)

  • Kim, Hyun-Gi;Kim, Sung Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.605-611
    • /
    • 2019
  • The fuel sloshing due to the rapid manoeuvre of the aircraft causes significant loads on internal components, which may break components or piping. In particular, a significant load is applied to the joint of the external fuel tank by sloshing movement, which may affect the safety of the aircraft when the joint of the external fuel tank is damaged. Therefore, in order to improve the survivability of aircraft and crew members, the design of external fuel tanks, and joints should be performed after evaluating the sloshing load through a numerical analysis of the fuel sloshing conditions. In this paper, a numerical analysis was performed on the sloshing test of the external fuel tank for rotorcraft. ALE (Arbitrary Lagrangian Eulerian) technique was used, and the test conditions specified in the U.S. Military Specification (MIL-DTL-27422D) was applied as the conditions for numerical analysis. As a result of the numerical analysis, the load on the joint of the external fuel tank was calculated. Moreover, the effects of sloshing movement on structural soundness were assessed through analysis of stress levels and margin of safety on metal fittings and composite containers.

Time Reduction Effect Analysis of SMART Frame for Long Span and Heavy Loaded Logistics Buildings (SMART 프레임의 공기단축 효과 분석 - 대형 물류창고 사례 -)

  • Kim, Doyeong;Ji, Woomin;Lim, Jeeyoung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.5
    • /
    • pp.519-530
    • /
    • 2022
  • As online commerce increases, the construction of large logistics buildings worldwide is exploding. Most of these buildings have the characteristics of long span and heavy loaded and use precast concrete components, a pin joint structure, for rapid construction. However, due to construction safety and structural stability requirements, the pin joint structure has many limitations in terms of the erection of the PC member, which increases the time and cost. A structural frame connected with steel joints between precast concrete components, called a SMART frame, has been developed, which addresses these constraints and risks. However, the effect of the appllication of a SMART frame on the time aspect has not been analysed. The study is a time reduction effect analysis of a SMART frame for long span and heavy loaded logistics buildings. For this study, the authors select a case site erected using existing PC components, and compare the time reduction with the SMART frame erection simulations. Through this analysis, it was found that a time reduciton about 4 months, approximately 48% of the conventional PC installation period could be achieved. If the SMART frame is applied when carrying out future large-scale logistics building projects, it can be expected to have the effect of significantly shortening the construction period compared to the conventional method.

Evaluation of the Lap Splice Strengths of High Strength Headed Bars by Flexural Tests of RC Beams (RC 보의 휨실험을 통한 고강도 확대머리철근의 겹침이음 강도 평가)

  • Lee, Ji-Hyeong;Jang, Duck-Young;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.6
    • /
    • pp.247-255
    • /
    • 2022
  • In this paper, a bending test was conducted on beams with two lap splice details when the effective depth of tensile high strength headed bars overlapped is the same and different. Through bending test, the lap splice performance of the high-strength headed bars was evaluated, and the applicability of the KDS-2021 design formula was evaluated. In the LS specimens with lap splice details where the high strength bars had the same effective depth, all specimens with 1.3 times or more of the development length of the KDS-2021 equation and 1 times or more of the ACI318-19 had the flexural failure mode after the ductile behavior to ensure sufficient lap splice performance. For specimens with details of lap joints between headed bars with different effective depth, when lap splice length is calculated by the KDS-2021 formula, the flexural stress may be transmitted so that the flexural strength at the cross section with the large effective depth and the cross section with the small effective depth becomes similar.

Constructability Evaluation of Seismic Mechanical Splice for Slurry Wall Joint Consisting of Steel Tube and Headed Bars (슬러리월의 내진설계를 위한 강재각관과 확대머리 철근으로 구성된 기계적 이음의 시공성 평가)

  • Park, Soon-Jeon;Kim, Dae-Young;Lim, In-Sik
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.3
    • /
    • pp.295-303
    • /
    • 2023
  • South Korea has recently witnessed an increasing number of seismic events, leading to a surge in studies focusing on seismic earth pressures, as well as the attributes of geological layers and ground where foundations are established. Consequently, earthquake-resistant design has become imperative to ensure the safety of subterranean structures. The slurry wall method, due to its superior wall rigidity, excellent water resistance, and minimal noise and vibration, is often employed in constructing high-rise buildings in urban areas. However, given the separation between panels that constitute the wall, slurry walls possess limited resistance to seismic loads in the longitudinal direction. As a solution, several studies have probed into the possibility of interconnecting slurry wall panels to augment their seismic performance. In this research, we developed and evaluated a method for linking slurry wall panels using mechanical joints, including concrete-confined steel pipes and headed bars, through mock-up tests. We also assessed the constructability of the suggested method and compared it with other analogous methods. Any challenges identified during the mock-up test were discussed to guide future research in resolving them. The results of this study aid in enhancing the seismic performance of slurry walls through the development of an interconnected panel method. Further research can build on these findings to address the identified issues and improve the efficacy and reliability of the proposed method.

Evaluation of Shear Deformation Energy and Fatigue Performance of Single-layer and Multi-layer Metal Bellows (단층 및 다층 금속 벨로우즈의 전단 변형 에너지 및 피로성능 평가)

  • Kyeong-Seok Lee;Jin-Seok Yu;Young-Soo Jeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.39-45
    • /
    • 2024
  • Seismic safety of expansion joints for piping systems has been underscored by water pipe ruptures and leaks resulting from the Gyeongju and Pohang earthquakes. Metal bellows in piping systems are applied to prevent damage from earthquakes and road subsidence in soft ground. Designed with a series of corrugated segments called convolutions, metal bellows exhibit flexibility to accommodate displacements. Several studies have examined variations in convolution shapes and layers based on the intended performance to be evaluated. Nonetheless, the research on the seismic performance of complex bellows having multiple corrugation heights is limited. In this study, monotonic loading tests, cyclic loading tests, and fatigue tests were conducted to evaluate the shear performance in seismic conditions, of metal bellows with variable convolution heights. Single- and triple-layer bellows were considered for the experimentation. The results reveal that triple-layer bellows exhibit larger maximum deformation and fatigue life than single-layer bellows. However, the high stiffness of triple-layer bellows in resisting internal pressure poses certain disadvantages. The convolutions are less flexible at lower displacements and experience leakage at a rate related to the variable height of the convolutions in certain conditions. At lower deformation rates, the fatigue life is rated higher as the number of layers increase. It converges to a similar fatigue life at higher deformation rates.

Evalution for Joints of Coastal Environments Blocks (Coastal Environments 블록 적용을 위한 연결부 강도평가)

  • Kim, Chun-Ho;Kim, Kwang-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.6 s.58
    • /
    • pp.176-182
    • /
    • 2009
  • Other damage can occur due to the preexisting dull structure and installation of nonenvironmental-friendly concrete structure, lack of function for preventing coastal erosion. Increase of personal income and fast spread of the concept of waterfront casued the initiation of many project to improve aging coastal ports. However, none of environment-friendly structure has been developed and pre-existing solid block, igloo block, tunnel block are used commonly. In piers and lighter's wharf where the ships are mooring, resonance by the generation of a reflected wave caused by penetration wave in the port and port wave increases wave heights in the port and makes difficult to maintain the temperature, causes problems in mooring ships and cargo-working, and eventually increase the occurance of damages of the small ships by the collision. Therefore, development of new types of blcok is necessary. To apply Coastal Environments block developed for this reason, it requires allowable bearing capacity evaluation of shear key. For this study, we made test specimen for connecting part of C.E. Block, and conducted friction test of boundary surface. Data obtained by the experiment was analyzed by finite element analysis and assessed the coefficient of friction between C.E. Block and boundary surface.

Design of Flat Plate Systems Using the Modified Equivalent Frame Method (수정된 등가골조법을 이용한 플랫플레이트 시스템의 설계)

  • Park, Young-Mi;Oh, Seung-Yong;Han, Sang-Whan
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.1
    • /
    • pp.35-41
    • /
    • 2008
  • In general, flat plate systems have been used as a gravity load resisting system (GLRS) in building. Thus, this system should be constructed with lateral force resisting system (LFRS) such as shear walls and brace frames. GLRS should retain the ability to undergo the lateral drift associated with the LFRS without loss of gravity load carrying capacity. And flat plate system can be designed LFRS as ordinary moment frame with the special details. Thus, flat plate system designed as GLRS or LFRS should be considered internal forces (e.g., unbalanced moments) and lateral deformation generated in vicinity of slab joints render the system more susceptible to punching shear. ACI 318 (2005) allows the direct design method, equivalent frame method under gravity loads and allows the finite-element models, effective beam width models, and equivalent frame models under lateral loads. These analysis methods can produce widely different result, and each has advantage and disadvantages. Thus, it is sometimes difficult for a designer to select an appropriate analysis method and interpret the results for design purposes. This study is to help designer selecting analysis method for flat plate system and to verify practicality of the modified equivalent frame method under lateral loads. This study compared internal force and drift obtained from frame methods with those obtained from finite element method under gravity and lateral loads. For this purposes, 7 story building is considered. Also, the accuracy of these models is verified by comparing analysis results using frame methods with published experimental results of NRC slab.