• 제목/요약/키워드: structural integrity evaluation

검색결과 360건 처리시간 0.022초

Assessment of steel components and reinforced concrete structures under steam explosion conditions

  • Kim, Seung Hyun;Chang, Yoon-Suk;Cho, Yong-Jin
    • Structural Engineering and Mechanics
    • /
    • 제60권2호
    • /
    • pp.337-350
    • /
    • 2016
  • Even though extensive researches have been performed for steam explosion due to their complex mechanisms and inherent uncertainties, establishment of severe accident management guidelines and strategies is one of state-of-the arts in nuclear industry. The goal of this research is primarily to examine effects of vessel failure modes and locations on nuclear facilities under typical steam explosion conditions. Both discrete and integrated models were employed from the viewpoint of structural integrity assessment of steel components and evaluation of the cracking and crushing in reinforced concrete structures. Thereafter, comparison of systematic analysis results was performed; despite the vessel failure modes were dominant, resulting maximum stresses at the all steel components were sufficiently lower than the corresponding yield strengths. Two failure criteria for the reinforced concrete structures such as the limiting failure ratio of concrete and the limiting strains for rebar and liner plate were satisfied under steam explosion conditions. Moreover, stresses of steel components and reinforced concrete structures were reduced with maximum difference of 12% when the integrated model was adopted comparing to those of discrete models.

풍력발전용 대형 복합재 회전날개의 구조시험 및 평가에 관한 연구 (Test and evaluation of a large scale composite rotor blade for wind turbine)

  • 공창덕;정종철;장병섭
    • 한국추진공학회지
    • /
    • 제5권1호
    • /
    • pp.76-81
    • /
    • 2001
  • A structural test of the wind turbine rotor blade is to evaluate the uncertainty of design due to selection of material, design concepts, production processes and so on, and their possible impacts on the structural integrity. In the full-scale static strength test, the measuring parameters are strain and displacements vs. loads, weight and the center of gravity. In order to simulate the aerodynamics load, the three-point loading method is applied. There is slight difference between the measured results and the predicted results for the reference fiber volume fraction of 60% . However, the agreement between the measured results and the predicted results with the actual fiber volume fraction of 52.5% is good. Even though a slightly non-linearity from 80% loading to 100% loading exists, a linear static solution is sufficient for the design purpose due to te small amount of non-linearity. Comparison between measured and predicted strain results at the maximum thickness positions of the blade profile for 0.236R(5.56m), 0.493R(11.59m) and 0.574R(13.43m), under 20%, 40%, 60%, 80% and 100% loadings for the upper part of the blade. The predicted values are in good agreement with the measured values.

  • PDF

Modeling of Reinforced Concrete for Reactor Cavity Analysis under Energetic Steam Explosion Condition

  • Kim, Seung Hyun;Chang, Yoon-Suk;Cho, Yong-Jin;Jhung, Myung Jo
    • Nuclear Engineering and Technology
    • /
    • 제48권1호
    • /
    • pp.218-227
    • /
    • 2016
  • Background: Steam explosions may occur in nuclear power plants by molten fuel-coolant interactions when the external reactor vessel cooling strategy fails. Since this phenomenon can threaten structural barriers as well as major components, extensive integrity assessment research is necessary to ensure their safety. Method: In this study, the influence of yield criteria was investigated to predict the failure of a reactor cavity under a typical postulated condition through detailed parametric finite element analyses. Further analyses using a geometrically simplified equivalent model with homogeneous concrete properties were also performed to examine its effectiveness as an alternative to the detailed reinforcement concrete model. Results: By comparing finite element analysis results such as cracking, crushing, stresses, and displacements, the Willam-Warnke model was derived for practical use, and failure criteria applicable to the reactor cavity under the severe accident condition were discussed. Conclusion: It was proved that the reactor cavity sustained its intended function as a barrier to avoid release of radioactive materials, irrespective of the different yield criteria that were adopted. In addition, from a conservative viewpoint, it seems possible to employ the simplified equivalent model to determine the damage extent and weakest points during the preliminary evaluation stage.

Evaluation of sloshing resistance performance for LNG carrier insulation system based on fluid-structure interaction analysis

  • Lee, Chi-Seung;Cho, Jin-Rae;Kim, Wha-Soo;Noh, Byeong-Jae;Kim, Myung-Hyun;Lee, Jae-Myung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권1호
    • /
    • pp.1-20
    • /
    • 2013
  • In the present paper, the sloshing resistance performance of a huge-size LNG carrier's insulation system is evaluated by the fluid-structure interaction (FSI) analysis. To do this, the global-local analysis which is based on the arbitrary Lagrangian-Eulerian (ALE) method is adopted to accurately calculate the structural behavior induced by internal LNG sloshing of a KC-1 type LNG carrier insulation system. During the global analysis, the sloshing flow and hydrodynamic pressure of internal LNG are analyzed by postulating the flexible insulation system as a rigid body. In addition, during the local analysis, the local hydroelastic response of the LNG carrier insulation system is computed by solving the local hydroelastic model where the entire and flexible insulation system is adopted and the numerical analysis results of the global analysis such as initial and boundary conditions are implemented into the local finite element model. The proposed novel analysis techniques can potentially be used to evaluate the structural integrity of LNG carrier insulation systems.

Numerical analysis of temperature fluctuation characteristics associated with thermal striping phenomena in the PGSFR

  • Jung, Yohan;Choi, Sun Rock;Hong, Jonggan
    • Nuclear Engineering and Technology
    • /
    • 제54권10호
    • /
    • pp.3928-3942
    • /
    • 2022
  • Thermal striping is a complex thermal-hydraulic phenomenon caused by fluid temperature fluctuations that can also cause high-cycle thermal fatigue to the structural wall of sodium-cooled fast reactors (SFRs). Numerical simulations using large-eddy simulation (LES) were performed to predict and evaluate the characteristics of the temperature fluctuations related to thermal striping in the upper internal structure (UIS) of the prototype generation-IV sodium-cooled fast reactor (PGSFR). Specific monitoring points were established for the fluid region near the control rod driving mechanism (CRDM) guide tubes, CRDM guide tube walls, and UIS support plates, and the normalized mean and fluctuating temperatures were investigated at these points. It was found that the location of the maximum amplitude of the temperature fluctuations in the UIS was the lowest end of the inner wall of the CRDM guide tube, and the maximum value of the normalized fluctuating temperatures was 17.2%. The frequency of the maximum temperature fluctuation on the CRDM guide tube walls, which is an important factor in thermal striping, was also analyzed using the fast Fourier transform analysis. These results can be used for the structural integrity evaluation of the UIS in SFR.

Evaluation of shear-key misalignment in grouted connections for offshore wind tower under axial loading

  • Seungyeon Lee;Seunghoon Seo;Seungjun Kim;Chulsang Yoo;Goangseup Zi
    • Computers and Concrete
    • /
    • 제33권5호
    • /
    • pp.509-518
    • /
    • 2024
  • In this study, we investigated the effect of shear-key placement on the performance of grouted connections in offshore wind-turbine structures. Considering the challenges of height control during installation, we designed and analyzed three grouted connection configurations. We compared the crack patterns and strain distribution in the shear keys under axial loading. The results indicate that the misalignment of shear keys significantly influences the ultimate load capacity of grouted connections. Notably, when the shear keys were positioned facing each other, the ultimate load decreased by approximately 15%, accompanied by the propagation of irregular cracks in the upper shear keys. Furthermore, the model with 50% misalignment in the shear-key placement exhibited the highest ultimate strength, indicating a more efficient load resistance than the reference model. This indicates that tensile-load-induced cracking and the formation of compressive struts in opposite directions significantly affect the structural integrity of grouted connections. These results demonstrate the importance of considering buckling effects in the design of grouted connections, particularly given the thin and slender nature of the inner sleeves. This study provides valuable insights into the design and analysis of offshore wind-turbine structures, highlighting the need for refined design formulas that account for shifts in shear-key placement and their structural implications.

A review of chloride induced stress corrosion cracking characterization in austenitic stainless steels using acoustic emission technique

  • Suresh Nuthalapati;K.E. Kee;Srinivasa Rao Pedapati;Khairulazhar Jumbri
    • Nuclear Engineering and Technology
    • /
    • 제56권2호
    • /
    • pp.688-706
    • /
    • 2024
  • Austenitic stainless steels (ASS) are extensively employed in various sectors such as nuclear, power, petrochemical, oil and gas because of their excellent structural strength and resistance to corrosion. SS304 and SS316 are the predominant choices for piping, pressure vessels, heat exchangers, nuclear reactor core components and support structures, but they are susceptible to stress corrosion cracking (SCC) in chloride-rich environments. Over the course of several decades, extensive research efforts have been directed towards evaluating SCC using diverse methodologies and models, albeit some uncertainties persist regarding the precise progression of cracks. This review paper focuses on the application of Acoustic Emission Technique (AET) for assessing SCC damage mechanism by monitoring the dynamic acoustic emissions or inelastic stress waves generated during the initiation and propagation of cracks. AET serves as a valuable non-destructive technique (NDT) for in-service evaluation of the structural integrity within operational conditions and early detection of critical flaws. By leveraging the time domain and time-frequency domain techniques, various Acoustic Emission (AE) parameters can be characterized and correlated with the multi-stage crack damage phenomena. Further theories of the SCC mechanisms are elucidated, with a focus on both the dissolution-based and cleavage-based damage models. Through the comprehensive insights provided here, this review stands to contribute to an enhanced understanding of SCC damage in stainless steels and the potential AET application in nuclear industry.

운전하중 조건에서 소형 풍력 발전기용 사출 나선형 블레이드 구조특성 평가 (Structural Characteristics Evaluation of the Injection Spiral Blade Used in Small Wind Turbines under Operating Conditions)

  • 길영욱;조영관;지호성;양형근;백준호;제덕근;정호승;박상후
    • 한국기계가공학회지
    • /
    • 제19권2호
    • /
    • pp.38-46
    • /
    • 2020
  • The purpose is to evaluate the structural characteristics of 750 mm diameter injection spiral blades under various operating conditions. A fiber-glass reinforced polypropylene material was employed to the injection blades, and mechanical tests on two kinds of glass-reinforced polypropylene were performed to evaluate the mechanical properties and to select a suitable candidate material. Also, three kinds of spiral blade geometries were studied to observe the influence of fixing rods between blades. For this, structural analyses were conducted to understand the role of fixing rods under a range of rotating speed. In addition, modal analysis was performed to confirm the resonance in the operating speed range. One-way fluid-structure interaction (FSI) analysis was carried out to know its mechanical integrity under dangerous wind speed conditions. Through this work, the structural characteristics of the proposed spiral blade geometries were studied under various operating conditions, and the requirements of mechanical properties of blades were determined.

공정열교환기 소형 시제품에 대한 고온구조해석(IV) - 거시적 고온 탄·소성 구조해석을 중심으로 - (High-Temperature Structural Analysis of a Small-Scale Prototype of a Process Heat Exchanger (IV) - Macroscopic High-Temperature Elastic-Plastic Analysis -)

  • 송기남;홍성덕;박홍윤
    • 대한기계학회논문집A
    • /
    • 제35권10호
    • /
    • pp.1249-1255
    • /
    • 2011
  • 공정열교환기는 초고온가스로로부터 생성된 $950^{\circ}C$ 정도의 초고온 열을 대량의 수소를 생산하기 위한 화학반응공정으로 전달하는데 필요한 핵심기기이다. Hastelloy-X 로 제작된 소형 공정열교환기 시제품이 한국원자력연구원에 있는 소형가스루프에서 성능시험이 계획되어 있다. 본 연구에서는 소형가스루프 시험조건하에서 소형 공정열교환기 시제품의 고온 구조건전성을 사전에 평가하기 위한 작업의 일환으로 소형 공정열교환기 시제품에 대한 고온 구조해석 모델링, 거시적 열 해석 및 탄 소성구조 해석을 수행하고 그 결과들을 정리한 것이다. 해석 결과는 공정열교환기 수정 시제품 성능시험장치 설계에 반영할 것이다.

소형 PCHE 시제품에 대한 거시적 고온 구조 해석 모델링 (II) (Macroscopic High-Temperature Structural Analysis Model of Small-Scale PCHE Prototype (II))

  • 송기남;이형연;홍성덕;박홍윤
    • 대한기계학회논문집A
    • /
    • 제35권9호
    • /
    • pp.1137-1143
    • /
    • 2011
  • 초고온가스로의 중간열교환기는 원자로에서 생산된 $950^{circ}C$ 정도의 초고온 열을 수소생산 공장으로 전달하는 핵심 기기이다. 한국원자력연구원에서는 중간열교환기의 후보 형태로 고려되고 있는 인쇄기판형 열교환기의 소형 시제품을 제작하였다. 본 연구는 소형가스루프 시험조건하에서 인쇄기판형 열교환기 소형 시제품의 고온 구조건전성을 시험수행 전에 미리 평가하기 위한 작업의 일환으로 인쇄기판형 열교환기 소형 시제품에 대한 고온 구조해석 모델링, 거시적 열 해석 및 구조 해석을 수행하고 그 결과들을 정리한 것이다. 해석 결과는 곧 수행될 인쇄기판형 열교환기 소형 시제품 성능시험결과와 비교하고 또한 향후 제작될 중형 시제품 설계/제작에 반영할 것이다.