• 제목/요약/키워드: structural integrity evaluation

검색결과 358건 처리시간 0.03초

하나로 침니내부지지대의 내진해석 및 진동시험 (Seismic Analysis and Vibration Test of HANARO In-Chimney Bracket)

  • 류정수;윤두병
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.481-488
    • /
    • 2001
  • The HANARO in-chimney bracket was proposed as a structure which supports the guide tubes of irradiation facilities at the irradiation sites of CT, IR and OR4/5 in HANARO core for the reduction of flow-induced vibration and seismic response of the irradiation facilities. For the evaluation of the structural integrity of the in-chimney bracket, its finite element model is developed. The seismic response analysis was performed for the in-chimney bracket and related reactor structures, under the response spectrum of OBE and SSE. The analysis results show that stress values of the in-chimney bracket and reactor structures for the seismic loads are within the ASME code limits. It is also confirmed that its fatigue usage factor is much less than 1.0. For the verification of the implementation effects of the in-chimney bracket, the vibration level of the guide tube of the instrumented fuel assembly, which is subjected to fluid-induced vibration, was measured and analyzed. The vibration analysis results demonstrate that the vibration level of the instrumented fuel assembly has been remarkably reduced after installing the in-chimney bracket. Therefore, when the in-chimney bracket is installed at the reactor chimney, any damage on the structural integrity is not expected.

  • PDF

철도차량 구조물의 확률론적 피로수명 평가 (Probabilistic Fatigue Life Evaluation of Rolling Stock Structures)

  • 구병춘;서정원
    • 한국자동차공학회논문집
    • /
    • 제11권5호
    • /
    • pp.89-94
    • /
    • 2003
  • Rolling stock structures such as bogie frame and car body play an important role for the support of vehicle leading. In general, more than 25 years' durability is needed for them. A lot of study has been carried out for the prediction of the fatigue life of the bogie frame and car body in experimental and theoretical domains. One of the new methods is a probabilistic fatigue lift evaluation. The objective of this paper is to estimate the fatigue lift of the bogie frame of an electric car, which was developed by the Korea Railroad Research Institute (KRRI). We used two approaches. In the first approach probabilistic distribution of S-N curve and limit state function of the equivalent stress of the measured stress spectra are used. In the second approach, limit state function is also used. And load spectra measured by strain gauges are approximated by the two-parameter Weibull distribution. Other probabilistic variables are represented by log-normal and normal distributions. Finally, reliability index and structural integrity of the bogie frame are estimated.

원자로 신형핵연료 하단고정체 응력 해석 (Stress Analysis for Lower End Fitting of Advanced LWR Fuel)

  • 이상순;문연철;변영주;김형구
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.139-145
    • /
    • 2002
  • In this study, the geometric modeling has been conducted for 2 models of lower end fitting of advanced LWR fuel using three-dimensional solid modeler, Solidworks. Then, the optimization and the three-dimensional stress analysis using the finite element method has been peformed. The evaluation for the mechanical integrity of 2 models has been peformed based on the stress distribution obtained from the finite element analysis.

  • PDF

3-D 솔리드모델러를 이용한 원자료 핵연료 하단고정체의 유한요소 해석 (Finite Element Analysis for Lower End Fitting using 3-D Solid Modeler)

  • 이상순;홍현기;문연철;전경락
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.3-9
    • /
    • 2001
  • In this study, the geometric modeling has been conducted for the current lower end fitting and 2 candidates using three-dimensional solid modeler, Solidworks. Then, the three-dimensional stress analysis using the finite element method has been performed. The evaluation for the mechanical integrity of 2 candidates has been performed based on the stress distribution obtained from the finite element analysis.

  • PDF

부분 열처리한 기계 구조용 탄소강의 피로균열 전파에 관한 연구 (A Study on the Fatigue Crack Propagation of Partly Heat Treated Medium Carbon Steel)

  • 김상철;김선용
    • 한국안전학회지
    • /
    • 제8권1호
    • /
    • pp.13-20
    • /
    • 1993
  • It is well known that mechanisms of fracture and fatigue crack propagation depend upon various characteristics such as environmental condition. crack geometry. heat treatment and mechanical properties. It seems to be important for the detailed evaluation of structural integrity to investigate the effects of the above factors on the behavior of structural components which contain flaws. In this paper. it is studied that the fatigue crack propagation of partly heat treated medium carbon steel (SM45C) by high frequency heat treatment.

  • PDF

SUS316L 로 제작된 실험실 수준 인쇄기판형 열교환기 시제품의 고온구조건전성 평가 (Evaluation of High-Temperature Structural Integrity Using Lab-Scale PCHE Prototype)

  • 송기남;홍성덕
    • 대한기계학회논문집A
    • /
    • 제37권9호
    • /
    • pp.1189-1194
    • /
    • 2013
  • 초고온가스로의 중간열교환기는 원자로에서 생산된 $950^{\circ}C$ 정도의 초고온 열을 수소생산 공장으로 전달하는 핵심 기기이다. 한국원자력연구원에서는 중간열교환기의 후보 형태로 고려되고 있는 인쇄기판형 열교환기의 실험실 수준 시제품을 제작하였다. 본 연구는 초고온헬륨루프 시험조건하에서 SUS316L 로 제작된 실험실 수준 인쇄기판형 열교환기 시제품의 고온구조건전성을 미리 평가하기 위한 작업의 일환으로 인쇄기판형 열교환기 실험실 수준 시제품에 대한 고온 구조해석 모델링, 거시적 열 해석 및 구조 해석을 수행하고 그 결과들을 정리한 것이다.

확률론적 파괴역학 수법의 적용성 검토 (Application of Probabilistic Fracture Mechanics Methodology)

  • 이준성;곽상록;김영진
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.667-670
    • /
    • 2001
  • For major structural components periodic inspections and integrity assessments are needed for the safety. However, many flaws are undetectable because sampling inspection is carried out during in-service inspection. Probabilistic integrity assessment is applied to take into consideration of uncertainty and variance of input parameters arise due to material properties and undetectable cracks. This paper describes a Probabilistic Fracture Mechanics(PEM) analysis based on the Monte Carlo(MC) algorithms. Taking a number of sampling data of probabilistic variables such as fracture toughness value, crack depth and aspect ratio of an initial surface crack, a MC simulation of failure judgement of samples is performed. For the verification of this analysis, a comparison study of th PFM analysis using a commercial code, mathematical method is carried out and a good agreement was observed between those results.

  • PDF

Experimental Evaluation of the Thermal Integrity of a Large Capacity Pressurized Heavy Water Reactor Transport Cask

  • Bang, Kyoung-Sik;Yang, Yun-Young;Choi, Woo-Seok
    • 방사성폐기물학회지
    • /
    • 제20권3호
    • /
    • pp.357-364
    • /
    • 2022
  • The safety of a KTC-360 transport cask, a large-capacity pressurized heavy-water reactor transport cask that transports CANDU spent nuclear fuel discharged from the reactor after burning in a pressurized heavy-water reactor, must be demonstrated under the normal transport and accident conditions specified under transport cask regulations. To confirm the thermal integrity of this cask under normal transport and accident conditions, high-temperature and fire tests were performed using a one-third slice model of an actual KTC-360 cask. The results revealed that the surface temperature of the cask was 62℃, indicating that such casks must be transported separately. The highest temperature of the CANDU spent nuclear fuel was predicted to be lower than the melting temperature of Zircaloy-4, which was the sheath material used. Therefore, if normal operating conditions are applied, the thermal integrity of a KTC-360 cask can be maintained under normal transport conditions. The fire test revealed that the maximum temperatures of the structural materials, stainless steel, and carbon steel were 446℃ lower than the permitted maximum temperatures, proving the thermal integrity of the cask under fire accident conditions.

Structural identification of gravity-type caisson structure via vibration feature analysis

  • Lee, So-Young;Huynh, Thanh-Canh;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • 제15권2호
    • /
    • pp.259-281
    • /
    • 2015
  • In this study, a structural identification method is proposed to assess the integrity of gravity-type caisson structures by analyzing vibration features. To achieve the objective, the following approaches are implemented. Firstly, a simplified structural model with a few degrees-of-freedom (DOFs) is formulated to represent the gravity-type caisson structure that corresponds to the sensors' DOFs. Secondly, a structural identification algorithm based on the use of vibration characteristics of the limited DOFs is formulated to fine-tune stiffness and damping parameters of the structural model. Finally, experimental evaluation is performed on a lab-scaled gravity-type caisson structure in a 2-D wave flume. For three structural states including an undamaged reference, a water-level change case, and a foundation-damage case, their corresponding structural integrities are assessed by identifying structural parameters of the three states by fine-tuning frequency response functions, natural frequencies and damping factors.