• Title/Summary/Keyword: structural inference

Search Result 131, Processing Time 0.023 seconds

Probabilistic-based assessment of composite steel-concrete structures through an innovative framework

  • Matos, Jose C.;Valente, Isabel B.;Cruz, Paulo J.S.;Moreira, Vicente N.
    • Steel and Composite Structures
    • /
    • v.20 no.6
    • /
    • pp.1345-1368
    • /
    • 2016
  • This paper presents the probabilistic-based assessment of composite steel-concrete structures through an innovative framework. This framework combines model identification and reliability assessment procedures. The paper starts by describing current structural assessment algorithms and the most relevant uncertainty sources. The developed model identification algorithm is then presented. During this procedure, the model parameters are automatically adjusted, so that the numerical results best fit the experimental data. Modelling and measurement errors are respectively incorporated in this algorithm. The reliability assessment procedure aims to assess the structure performance, considering randomness in model parameters. Since monitoring and characterization tests are common measures to control and acquire information about those parameters, a Bayesian inference procedure is incorporated to update the reliability assessment. The framework is then tested with a set of composite steel-concrete beams, which behavior is complex. The experimental tests, as well as the developed numerical model and the obtained results from the proposed framework, are respectively present.

Wireless sensor network design for large-scale infrastructures health monitoring with optimal information-lifespan tradeoff

  • Xiao-Han, Hao;Sin-Chi, Kuok;Ka-Veng, Yuen
    • Smart Structures and Systems
    • /
    • v.30 no.6
    • /
    • pp.583-599
    • /
    • 2022
  • In this paper, a multi-objective wireless sensor network configuration optimization method is proposed. The proposed method aims to determine the optimal information and lifespan wireless sensor network for structural health monitoring of large-scale infrastructures. In particular, cluster-based wireless sensor networks with multi-type of sensors are considered. To optimize the lifetime of the wireless sensor network, a cluster-based network optimization algorithm that optimizes the arrangement of cluster heads and base station is developed. On the other hand, based on the Bayesian inference, the uncertainty of the estimated parameters can be quantified. The coefficient of variance of the estimated parameters can be obtained, which is utilized as a holistic measure to evaluate the estimation accuracy of sensor configurations with multi-type of sensors. The proposed method provides the optimal wireless sensor network configuration that satisfies the required estimation accuracy with the longest lifetime. The proposed method is illustrated by designing the optimal wireless sensor network configuration of a cable-stayed bridge and a space truss.

Application of ANFIS to the design of elliptical CFST columns

  • Ngoc-Long Tran;Trong-Cuong Vo;Duy-Duan Nguyen;Van-Quang Nguyen;Huy-Khanh Dang;Viet-Linh Tran
    • Advances in Computational Design
    • /
    • v.8 no.2
    • /
    • pp.147-177
    • /
    • 2023
  • Elliptical concrete-filled steel tubular (CFST) column is widely used in modern structures for both aesthetical appeal and structural performance benefits. The ultimate axial load is a critical factor for designing the elliptical CFST short columns. However, there are complications of geometric and material interactions, which make a difficulty in determining a simple model for predicting the ultimate axial load of elliptical CFST short columns. This study aims to propose an efficient adaptive neuro-fuzzy inference system (ANFIS) model for predicting the ultimate axial load of elliptical CFST short columns. In the proposed method, the ANFIS model is used to establish a relationship between the ultimate axial load and geometric and material properties of elliptical CFST short columns. Accordingly, a total of 188 experimental and simulation datasets of elliptical CFST short columns are used to develop the ANFIS models. The performance of the proposed ANFIS model is compared with that of existing design formulas. The results show that the proposed ANFIS model is more accurate than existing empirical and theoretical formulas. Finally, an explicit formula and a Graphical User Interface (GUI) tool are developed to apply the proposed ANFIS model for practical use.

Robust wireless sensor network configuration design for structural health monitoring with optimal information-energy tradeoff

  • Xiao-Han Hao;Sin-Chi Kuok;Ka-Veng Yuen
    • Smart Structures and Systems
    • /
    • v.33 no.6
    • /
    • pp.465-482
    • /
    • 2024
  • In this paper, a robust wireless sensor network configuration design method is proposed to develop the optimal configuration under the consideration of sensor failure and energy consumption. A malfunctioned sensor in a wireless sensor network may lead to data transmission failure of the entire sensing cluster, inducing severe deterioration in system identification performance. The proposed method determines a wireless sensor network configuration that is robust against sensor failure. By utilizing Bayesian inference, we introduce a robust indicator to evaluate the impact on estimation accuracy of sensor configurations with various malfunctioned sensors. Moreover, a network formation strategy is proposed to optimize the energy efficiency of the wireless sensor network configuration. Therefore, the resultant robust wireless sensor network configuration can operate with the minimum energy consumption while the measurement information of the sensor network with malfunctioned sensors can be guaranteed. The proposed method is illustrated by designing the robust wireless sensor network configurations of a truss model and a bridge model.

Bayesian estimation of tension in bridge hangers using modal frequency measurements

  • Papadimitriou, Costas;Giakoumi, Konstantina;Argyris, Costas;Spyrou, Leonidas A.;Panetsos, Panagiotis
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.4
    • /
    • pp.349-375
    • /
    • 2016
  • The tension of an arch bridge hanger is estimated using a number of experimentally identified modal frequencies. The hanger is connected through metallic plates to the bridge deck and arch. Two different categories of model classes are considered to simulate the vibrations of the hanger: an analytical model based on the Euler-Bernoulli beam theory, and a high-fidelity finite element (FE) model. A Bayesian parameter estimation and model selection method is used to discriminate between models, select the best model, and estimate the hanger tension and its uncertainty. It is demonstrated that the end plate connections and boundary conditions of the hanger due to the flexibility of the deck/arch significantly affect the estimate of the axial load and its uncertainty. A fixed-end high fidelity FE model of the hanger underestimates the hanger tension by more than 20 compared to a baseline FE model with flexible supports. Simplified beam models can give fairly accurate results, close to the ones obtained from the high fidelity FE model with flexible support conditions, provided that the concept of equivalent length is introduced and/or end rotational springs are included to simulate the flexibility of the hanger ends. The effect of the number of experimentally identified modal frequencies on the estimates of the hanger tension and its uncertainty is investigated.

Boosting the Reasoning-Based Approach by Applying Structural Metrics for Ontology Alignment

  • Khiat, Abderrahmane;Benaissa, Moussa
    • Journal of Information Processing Systems
    • /
    • v.13 no.4
    • /
    • pp.834-851
    • /
    • 2017
  • The amount of sources of information available on the web using ontologies as support continues to increase and is often heterogeneous and distributed. Ontology alignment is the solution to ensure semantic interoperability. In this paper, we describe a new ontology alignment approach, which consists of combining structure-based and reasoning-based approaches in order to discover new semantic correspondences between entities of different ontologies. We used the biblio test of the benchmark series and anatomy series of the Ontology Alignment Evaluation Initiative (OAEI) 2012 evaluation campaign to evaluate the performance of our approach. We compared our approach successively with LogMap and YAM++ systems. We also analyzed the contribution of our method compared to structural and semantic methods. The results obtained show that our performance provides good performance. Indeed, these results are better than those of the LogMap system in terms of precision, recall, and F-measure. Our approach has also been proven to be more relevant than YAM++ for certain types of ontologies and significantly improves the structure-based and reasoningbased methods.

Research of Patent Technology Trends in Textile Materials: Text Mining Methodology Using DETM & STM (섬유소재 분야 특허 기술 동향 분석: DETM & STM 텍스트마이닝 방법론 활용)

  • Lee, Hyun Sang;Jo, Bo Geun;Oh, Se Hwan;Ha, Sung Ho
    • The Journal of Information Systems
    • /
    • v.30 no.3
    • /
    • pp.201-216
    • /
    • 2021
  • Purpose The purpose of this study is to analyze the trend of patent technology in textile materials using text mining methodology based on Dynamic Embedded Topic Model and Structural Topic Model. It is expected that this study will have positive impact on revitalizing and developing textile materials industry as finding out technology trends. Design/methodology/approach The data used in this study is 866 domestic patent text data in textile material from 1974 to 2020. In order to analyze technology trends from various aspect, Dynamic Embedded Topic Model and Structural Topic Model mechanism were used. The word embedding technique used in DETM is the GloVe technique. For Stable learning of topic modeling, amortized variational inference was performed based on the Recurrent Neural Network. Findings As a result of this analysis, it was found that 'manufacture' topics had the largest share among the six topics. Keyword trend analysis found the fact that natural and nanotechnology have recently been attracting attention. The metadata analysis results showed that manufacture technologies could have a high probability of patent registration in entire time series, but the analysis results in recent years showed that the trend of elasticity and safety technology is increasing.

Bayesian forecasting approach for structure response prediction and load effect separation of a revolving auditorium

  • Ma, Zhi;Yun, Chung-Bang;Shen, Yan-Bin;Yu, Feng;Wan, Hua-Ping;Luo, Yao-Zhi
    • Smart Structures and Systems
    • /
    • v.24 no.4
    • /
    • pp.507-524
    • /
    • 2019
  • A Bayesian dynamic linear model (BDLM) is presented for a data-driven analysis for response prediction and load effect separation of a revolving auditorium structure, where the main loads are self-weight and dead loads, temperature load, and audience load. Analyses are carried out based on the long-term monitoring data for static strains on several key members of the structure. Three improvements are introduced to the ordinary regression BDLM, which are a classificatory regression term to address the temporary audience load effect, improved inference for the variance of observation noise to be updated continuously, and component discount factors for effective load effect separation. The effects of those improvements are evaluated regarding the root mean square errors, standard deviations, and 95% confidence intervals of the predictions. Bayes factors are used for evaluating the probability distributions of the predictions, which are essential to structural condition assessments, such as outlier identification and reliability analysis. The performance of the present BDLM has been successfully verified based on the simulated data and the real data obtained from the structural health monitoring system installed on the revolving structure.

Twin models for high-resolution visual inspections

  • Seyedomid Sajedi;Kareem A. Eltouny;Xiao Liang
    • Smart Structures and Systems
    • /
    • v.31 no.4
    • /
    • pp.351-363
    • /
    • 2023
  • Visual structural inspections are an inseparable part of post-earthquake damage assessments. With unmanned aerial vehicles (UAVs) establishing a new frontier in visual inspections, there are major computational challenges in processing the collected massive amounts of high-resolution visual data. We propose twin deep learning models that can provide accurate high-resolution structural components and damage segmentation masks efficiently. The traditional approach to cope with high memory computational demands is to either uniformly downsample the raw images at the price of losing fine local details or cropping smaller parts of the images leading to a loss of global contextual information. Therefore, our twin models comprising Trainable Resizing for high-resolution Segmentation Network (TRS-Net) and DmgFormer approaches the global and local semantics from different perspectives. TRS-Net is a compound, high-resolution segmentation architecture equipped with learnable downsampler and upsampler modules to minimize information loss for optimal performance and efficiency. DmgFormer utilizes a transformer backbone and a convolutional decoder head with skip connections on a grid of crops aiming for high precision learning without downsizing. An augmented inference technique is used to boost performance further and reduce the possible loss of context due to grid cropping. Comprehensive experiments have been performed on the 3D physics-based graphics models (PBGMs) synthetic environments in the QuakeCity dataset. The proposed framework is evaluated using several metrics on three segmentation tasks: component type, component damage state, and global damage (crack, rebar, spalling). The models were developed as part of the 2nd International Competition for Structural Health Monitoring.

A Study on Subjective Assessment of Knit Fabric by ANFIS

  • Ju Jeong-Ah;Ryu Hyo-Seon
    • Fibers and Polymers
    • /
    • v.7 no.2
    • /
    • pp.203-212
    • /
    • 2006
  • The purpose of this study was to examine the effects of the structural properties of plain knit fabrics on the subjective perception of textures, sensibilities, and preference among consumers. This study, then, aimed to provide useful information with respect to planning and designing knitted fabrics by predicting the subjective characteristics analyzed according to their structural properties. For this purpose, we employed statistical analysis tools, such as factor and regression analysis and an adaptive-network-based fuzzy inference system(ANFIS), thereby combining the merits of fuzzy and neural networks and presupposing a non-linear relationship. Through factor analysis, we also categorized the subjective textures into 'roughness', 'softness', 'bulkiness' and 'stretch-ability' with R2=70.32%: and categorized the sensibilities into 'Stable/Neat', 'Natural/Comfortable' and 'Feminine/Elegant' with R2=68.12%. We analyzed subjective textures, sensibilities, and preference with ANFIS, assuming non-linear relationships; consequently, we were able to generate three or four fuzzy rules using wool/rayon fiber content and loop length as input data. The textures of roughness and softness exhibited a linear relationship, but other subjective characteristics demonstrated a non-linear input-output relationship. Compared with linear regression analysis, the ANFIS exhibited had higher predictive power with respect to predicting subjective characteristics.