• Title/Summary/Keyword: structural homogeneity

Search Result 87, Processing Time 0.023 seconds

Dynamical behavior of the orthotropic elastic material using an analytical solution

  • Balubaid, Mohammed;Abdo, H.;Ghandourah, E.;Mahmoud, S.R.
    • Geomechanics and Engineering
    • /
    • v.25 no.4
    • /
    • pp.331-339
    • /
    • 2021
  • In this work, an analytical solution is provided for the dynamical response of an orthotropic non-homogeneous elastic material. The present study has engineering applications in the fields of geophysical physics, structural elements, plasma physics, and the corresponding measurement techniques of magneto-elasticity. The analytical performances for the elastodynamic equations has been solved regarding displacements. The influences of the rotation, the magnetic field, the non-homogeneity based radial displacement and the corresponding stresses in an orthotropic material are investigated. The variations of the stresses, the displacement, and the perturbation magnetic field have been illustrated. The comparisons is performed using the previous solutions in the magnetic field absence, the non-homogeneity and the rotation.

A Review of Structural Testing Methods for ASIC based AI Accelerators

  • Umair, Saeed;Irfan Ali, Tunio;Majid, Hussain;Fayaz Ahmed, Memon;Ayaz Ahmed, Hoshu;Ghulam, Hussain
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.1
    • /
    • pp.103-111
    • /
    • 2023
  • Implementing conventional DFT solution for arrays of DNN accelerators having large number of processing elements (PEs), without considering architectural characteristics of PEs may incur overwhelming test overheads. Recent DFT based techniques have utilized the homogeneity and dataflow of arrays at PE-level and Core-level for obtaining reduction in; test pattern volume, test time, test power and ATPG runtime. This paper reviews these contemporary test solutions for ASIC based DNN accelerators. Mainly, the proposed test architectures, pattern application method with their objectives are reviewed. It is observed that exploitation of architectural characteristic such as homogeneity and dataflow of PEs/ arrays results in reduced test overheads.

Stochastic finite element analysis of plate structures by weighted integral method

  • Choi, Chang-Koon;Noh, Hyuk-Chun
    • Structural Engineering and Mechanics
    • /
    • v.4 no.6
    • /
    • pp.703-715
    • /
    • 1996
  • In stochastic analysis, the randomness of the structural parameters is taken into consideration and the response variability is obtained in addition to the conventional (mean) response. In the present paper the structural response variability of plate structure is calculated using the weighted integral method and is compared with the results obtained by different methods. The stochastic field is assumed to be normally distributed and to have the homogeneity. The decomposition of strain-displacement matrix enabled us to extend the formulation to the stochastic analysis with the quadratic elements in the weighted integral method. A new auto-correlation function is derived considering the uncertainty of plate thickness. The results obtained in the numerical examples by two different methods, i.e., weighted integral method and Monte Carlo simulation, are in a close agreement. In the case of the variable plate thickness, the obtained results are in good agreement with those of Lawrence and Monte Carlo simulation.

Numerical Objective Assessment Using Structural Similarity for Diffuse Optical Reconstructed Images (재구성된 광간섭단층 영상의 구조적 유사성을 이용한 수치 목표 평가)

  • Mudeng, Vicky;Choe, Se-woon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.658-660
    • /
    • 2021
  • The work within this study develops an algorithm based on the structural similarity index to assess numerically between reconstructed images with a reference image to separate the homogeneity and heterogeneity for diffuse optical tomography. Global geometry and region of interest assessment have been measured to yield the similarity. The results indicate that the mean of structural similarity index shows potential performance to distinguish between visible and invisible inclusion inside the model. Therefore, the structural similarity index may promise to assist the image assessment for evaluating breast structural information.

  • PDF

The Impact of SNS Advertising and the Musical Characteristics of SNS Advertising on Advertising Performence

  • YiJie WANG;EunJu PARK;KyoungSeop CHO
    • The Journal of Economics, Marketing and Management
    • /
    • v.12 no.1
    • /
    • pp.77-88
    • /
    • 2024
  • Purpose: By studying the effects of SNS advertising characteristics and SNS advertising music characteristics conducted by companies on advertising preference and advertising effects, we would like to suggest a plan for effective SNS advertising operation. Research design, data and methodology: In this study, a total of 483 surveys were collected for college student consumers in their 20s who had experience seeing advertisements on SNS, and 458 were used for the final analysis. In addition, the collected questionnaire data were analyzed using statistical programs SPSS 24.0 and AMOS 24.0, and Sobel Test was performed through structural equation modeling and regression analysis. Results: Advertising preference, purchase, and recommendation intentions increased as consumers who saw advertisements on SNS perceived the characteristics of advertisements (information, entertainment, individuality, and interactivity). However, advertising preference was not formed by SNS advertising music characteristics (fun, information delivery, unconscious stimulation, and emotional homogeneity). In addition, the higher the perception of SNS advertising music characteristics (fun, information delivery, unconscious stimulation, and emotional homogeneity), the more advertising effects such as purchase and recommendation intentions were linked, and the higher the perception of SNS advertising music characteristics (fun, information delivery, unconscious stimulation, and emotional homogeneity), the more advertising effects such as purchase and recommendation intentions could be created. Finally, it was confirmed that advertising preference had a partial mediating effect between SNS advertising characteristics and advertising effects, and between SNS advertising music characteristics and advertising effects. Conclusions: Unlike previous studies that have investigated the causal relationship of advertising effects according to sub-factors such as SNS advertising characteristics and SNS advertising music characteristics, it is significant in that it analyzes the variables used in the study as secondary factors.

Evaluation of In-Plane Effective Properties of Circular-Hole Perforated Sheet (원형 다공 평판의 면내 유효 물성치 계산)

  • 정일섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.181-188
    • /
    • 2004
  • Structural analysis for materials containing regularly spaced in-homogeneities is usually executed by using averaged material properties. For the homogenization process, a unit cell is defined and loaded somehow, and its response is investigated to evaluate the properties. The imposed loading conditions should accord to the behavior of unit cell immersed in the macroscopic structure in order to guarantee the accuracy of the effective properties. Each unit cell shows periodic variation of strain if the material is loaded uniformly, and in this study, direct implementation of this characteristic behavior is attempted on FE models of unit cell. Conventional finite element analysis tool can be used without any modification, and the boundary of unit cell is constrained in a way that the periodicity is satisfied. The proposed method is applicable to skew arrayed in-homogeneity problems. The flexibility matrix relating tonsorial stress and strain components in skewed rectilinear coordinate system is transformed so that the required engineering constants can be evaluated. Effective properties are computed for the materials with square and skew arrayed circular holes, and its accuracy is examined.

Magneto-thermo-elastic response of a rotating functionally graded cylinder

  • Hosseini, Mohammad;Dini, Ali
    • Structural Engineering and Mechanics
    • /
    • v.56 no.1
    • /
    • pp.137-156
    • /
    • 2015
  • In this paper, an analytical solution of displacement, strain and stress field for rotating thick-walled cylinder made of functionally graded material subjected to the uniform external magnetic field and thermal field in plane strain state has been studied. Stress, strain and displacement field as a function of radial coordinates considering magneto-thermo-elasticity are derived analytically. According to the Maxwell electro-dynamic equations, Lorentz force in term of displacement is obtained in cylindrical coordinates. Also, symmetric temperature distribution along the thickness of hollow cylinder is obtained by solving Fourier heat transfer equation in cylindrical coordinates. Using equation of equilibrium and thermo-mechanical constitutive equations associated with Lorentz force, a second-order inhomogeneous differential equation in term of displacement is obtained and will be solved analytically. Except Poisson's ratio, other mechanical properties such as elasticity modulus, density, magnetic permeability coefficient, heat conduction coefficient and thermal expansion coefficient are assumed to vary through the thickness according to a power law. In results analysis, non-homogeneity parameter has been chosen arbitrary and inner and outer surface of cylinder are assumed to be rich metal and rich ceramic, respectively. The effect of rotation, thermal, magnetic field and non-homogeneity parameter of functionally graded material which indicates percentages of cylinder's constituents are studied on displacement, Von Mises equivalent stress and Von Mises equivalent strain fields.

Impact of fine fillers on flowability, fiber dispersion, strength, and tensile strain hardening of UHPC

  • Chung-Chan Hung;Kuo-Wei Wen;Yueh-Ting Chen
    • Advances in concrete construction
    • /
    • v.15 no.6
    • /
    • pp.405-417
    • /
    • 2023
  • While ultra-high performance concrete (UHPC) is commonly reinforced with micro straight steel fibers in existing applications, studies have indicated that the use of deformed steel macro-fibers leads to enhanced ductility and post-peak responses for UHPC structural elements, which is of particular importance for earthquake-resistant structures. However, there are potential concerns regarding the use of UHPC reinforced with macro-fibers due to the issues of workability and fiber distribution. The objective of this study was to address these issues by extensively investigating the restricted and non-restricted deformability, filling ability, horizontal and vertical velocities, and passing ability of UHPC containing macro hooked-end steel fibers. A new approach is suggested to examine the homogeneity of fiber distribution in UHPC. The influences of ultra-fine fillers and steel macro-fibers on the workability of fresh UHPC and the mechanics of hardened UHPC were examined. It was found that although increasing the ratio of quartz powder to cement led to an improvement in the workability and tensile strain hardening behavior of UHPC, it reduced the fiber distribution homogeneity. The addition of 1% volume fraction of macro-fibers in UHPC improved workability, but reduced its compressive strength, which is contrary to the effect of micro-fiber inclusion in UHPC.

Determination of Absorbed Dose for Gafchromic EBT3 Film Using Texture Analysis of Scanning Electron Microscopy Images: A Feasibility Study

  • So-Yeon Park
    • Progress in Medical Physics
    • /
    • v.33 no.4
    • /
    • pp.158-163
    • /
    • 2022
  • Purpose: We subjected scanning electron microscopic (SEM) images of the active layer of EBT3 film to texture analysis to determine the dose-response curve. Methods: Uncoated Gafchromic EBT3 films were prepared for direct surface SEM scanning. Absorbed doses of 0-20 Gy were delivered to the film's surface using a 6 MV TrueBeam STx photon beam. The film's surface was scanned using a SEM under 100× and 3,000× magnification. Four textural features (Homogeneity, Correlation, Contrast, and Energy) were calculated based on the gray level co-occurrence matrix (GLCM) using the SEM images corresponding to each dose. We used R-square to evaluate the linear relationship between delivered doses and textural features of the film's surface. Results: Correlation resulted in higher linearity and dose-response curve sensitivity than Homogeneity, Contrast, or Energy. The R-square value was 0.964 for correlation using 3,000× magnified SEM images with 9-pixel offsets. Dose verification was used to determine the difference between the prescribed and measured doses for 0, 5, 10, 15, and 20 Gy as 0.09, 1.96, -2.29, 0.17, and 0.08 Gy, respectively. Conclusions: Texture analysis can be used to accurately convert microscopic structural changes to the EBT3 film's surface into absorbed doses. Our proposed method is feasible and may improve the accuracy of film dosimetry used to protect patients from excess radiation exposure.

Overproduction, Purification, and Characterization of Heat Stable Aldolase from Methanococcus jannaschii, a Hyperthermophic Archaea

  • Choi, In-Geol;Cho, Chun-Seok;Cho, Yun-Je;Yu, Yeon-Gyu
    • BMB Reports
    • /
    • v.31 no.2
    • /
    • pp.130-134
    • /
    • 1998
  • An aldolase gene has been cloned from Methanococcus jannaschii. The coding region of the gene has been expressed in E. coli using a pET system to a level of 30% of total cellular proteins. The protein was purified to more than 95 % homogeneity by heat treatment and ion exchange chromatography. The protein performed an aldol condensation reaction with glyceraldehyde as substrate and dihydroxyacetone phosphate as a carboxyl donor. The protein was determined to be a type II aldolase which requires the $Zn^{2+}$ ion as a metal cofactor. This enzyme has a broad range of optimum pH (7-9) and temperature ($50-80^{\circ}C$). It shows strong stability against heat, chemical denaturants, as well as a high percentage' of organic solvents. The half-life of this enzyme at $85^{\circ}C$ is more than 24 h and it maintains more than 90% of aldolase activity in the presence of 6 M urea, 50% acetonitrile, or 15% isopropyl alcohol.

  • PDF