• Title/Summary/Keyword: structural health monitoring in Japan

Search Result 8, Processing Time 0.022 seconds

The needs for advanced sensor technologies in risk assessment of civil infrastructures

  • Fujino, Yozo;Siringoringo, Dionysius M.;Abe, Masato
    • Smart Structures and Systems
    • /
    • v.5 no.2
    • /
    • pp.173-191
    • /
    • 2009
  • Civil infrastructures are always subjected to various types of hazard and deterioration. These conditions require systematic efforts to assess the exposure and vulnerability of infrastructure, as well as producing strategic countermeasures to reduce the risks. This paper describes the needs for and concept of advanced sensor technologies for risk assessment of civil infrastructure in Japan. Backgrounds of the infrastructure problems such as natural disasters, difficult environment, limited resource for maintenance, and increasing requirement for safety are discussed. The paper presents a concept of risk assessment, which is defined as a combination of hazard and structural vulnerability assessment. An overview of current practices and research activities toward implementing the concept is presented. This includes implementation of structural health monitoring (SHM) systems for environment and natural disaster prevention, improvement of stock management, and prevention of structural failure.

Recent R&D activities on structural health monitoring in Korea

  • Kim, Jeong-Tae;Sim, Sung-Han;Cho, Soojin;Yun, Chung-Bang;Min, Jiyoung
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.1
    • /
    • pp.91-114
    • /
    • 2016
  • In this paper, recent research trends and activities on structural health monitoring (SHM) of civil infrastructure in Korea are reviewed. Recently, there has been increasing need for adopting smart sensing technologies to SHM, so this review focuses on smart sensing, monitoring, and assessment for civil infrastructure. Firstly, the research activities on smart sensor technology is reviewed including optical fiber sensors, piezoelectric sensors, wireless smart sensors, and vision-based sensing system. Then, a brief overview is given to the recent advances in smart monitoring and assessment techniques such as vibration-based global monitoring techniques, local monitoring with piezoelectric materials, decentralized monitoring techniques for wireless sensors, wireless power supply and energy harvest. Finally, recent joint SHM activities on several test beds in Korea are discussed to share the up-to-date information and to promote the smart sensors and monitoring technologies for applications to civil infrastructure. It includes a Korea-US joint research on test bridges of the Korea Expressway Corporation (KEC), a Korea-US-Japan joint research on Jindo cable-stayed bridge, and a comparative study for cable tension measurement techniques on Hwamyung cable-stayed bridge, and a campaign test for displacement measurement techniques on Sorok suspension bridge.

Long term structural health monitoring for old deteriorated bridges: a copula-ARMA approach

  • Zhang, Yi;Kim, Chul-Woo;Zhang, Lian;Bai, Yongtao;Yang, Hao;Xu, Xiangyang;Zhang, Zhenhao
    • Smart Structures and Systems
    • /
    • v.25 no.3
    • /
    • pp.285-299
    • /
    • 2020
  • Long term structural health monitoring has gained wide attention among civil engineers in recent years due to the scale and severity of infrastructure deterioration. Establishing effective damage indicators and proposing enhanced monitoring methods are of great interests to the engineering practices. In the case of bridge health monitoring, long term structural vibration measurement has been acknowledged to be quite useful and utilized in the planning of maintenance works. Previous researches are majorly concentrated on linear time series models for the measurement, whereas nonlinear dependences among the measurement are not carefully considered. In this paper, a new bridge health monitoring method is proposed based on the use of long term vibration measurement. A combination of the fundamental ARMA model and copula theory is investigated for the first time in detecting bridge structural damages. The concept is applied to a real engineering practice in Japan. The efficiency and accuracy of the copula based damage indicator is analyzed and compared in different window sizes. The performance of the copula based indicator is discussed based on the damage detection rate between the intact structural condition and the damaged structural condition.

Rapid Diagnosis Systems Using Accelerometers in Seismic Damage of Tall Buildings

  • Tsuchihashi, Toru;Yasuda, Masaharu
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.3
    • /
    • pp.207-216
    • /
    • 2017
  • Installing accelerometers in a building is an effective way to know how the building shakes when an earthquake happens. In this paper, we will introduce an example of an analysis that captures the acceleration reduction effect of the vibration damping device using data observed by the accelerometer at Roppongi Hills Mori Tower in Minato-ku, Tokyo, during the Great East Japan Earthquake on March 11, 2011. Moreover, as the latest effort, from the standpoint of a developer who builds and operates a number of high-rise buildings in Japan, where frequent earthquakes are experienced, a system for real-time processing of accelerometer data was developed to instantly diagnose the degree of damage to high-rise buildings, and the actual system of earthquake damage health monitoring is discussed. This system is currently in operation in twelve high-rise buildings including Roppongi Hills Mori Tower.

Health Monitoring of High-rise Building with Fiber Optic Sensor (SOFO)

  • Mikami, Takao;Nishizawa, Takao
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.1
    • /
    • pp.27-37
    • /
    • 2015
  • Structural health monitoring is becoming more and more important in the domain of civil engineering as a proper mean to increase and maintain the safety, especially in the land of earthquakes like Japan. In many civil structures, the deformations are the most relevant parameter to be monitored. In this context, a monitoring technology based on the use of long-gage fiber optic deformation sensor, SOFO is being applied to a 33-floors tall building in Tokyo. Sensors were installed on the $2^{nd}$ floor's steel columns of the building on May 2005 in the early stage of the construction. The installed SOFO sensors were dynamic compatible ones which enable both static and dynamic measurements. The monitoring is to be performed during the whole lifespan of the building. During the construction, static deformations of the columns had been measured on a regular basis using a reading unit for static measurement and dynamic deformation measurements were occasionally conducted using a reading unit for dynamic measurement. The building was completed on August 2006. After the completion, static and dynamic deformation measurements have been continuing. This paper describes a health monitoring technology, SOFO system which is applicable to high-rise buildings and monitoring results of a 33-floors tall building in Tokyo from May 2005 to October 2010.

Monitoring of a CFRP-Stiffened Panel Manufactured by VaRTM Using Fiber-Optic Sensors

  • Takeda, Shin-Ichi;Mizutani, Tadahito;Nishi, Takafumi;Uota, Naoki;Hirano, Yoshiyasu;Iwahori, Yutaka;Nagao, Yosuke;Takeda, Nobuo
    • Advanced Composite Materials
    • /
    • v.17 no.2
    • /
    • pp.125-137
    • /
    • 2008
  • FBG (Fiber Bragg Grating) sensors and optical fibers were embedded into CFRP dry preforms before resin impregnation in VaRTM (Vacuum-assisted Resin Transfer Molding). The embedding location was the interface between the skin and the stringer in a CFRP-stiffened panel. The reflection spectra of the FBG sensors monitored the strain and temperature changes during all the molding processes. The internal residual strains of the CFRP panel could be evaluated during both the curing time and the post-curing time. The temperature changes indicated the differences between the dry preform and the outside of the vacuum bagging. After the molding, four-point bending was applied to the panel for the verification of its structural integrity and the sensor capabilities. The optical fibers were then used for the newly-developed PPP-BOTDA (Pulse-PrePump Brillouin Optical Time Domain Analysis) system. The long-range distributed strain and temperature can be measured by this system, whose spatial resolution is 100 mm. The strain changes from the FBGs and the PPP-BOTDA agreed well with those from the conventional strain gages and FE analysis in the CFRP panel. Therefore, the fiber-optic sensors and its system were very effective for the evaluation of the VaRTM composite structures.

A Development of Real-time Vibration Monitoring and Analysis System Linked to the Integrated Management System of Ministry of Public Safety and Security (국민안전처 통합관리시스템 연계 가능한 시설물 진동 감지 및 분석 시스템 개발)

  • Lim, Ji-Hoon;Jung, Jin-Woo;Moon, Dae-Joong;Choi, Dong-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.130-139
    • /
    • 2016
  • A frequency of earthquake occurrence in the Republic of Korea is increasing over the past few decades. In this situation, an importance of earthquake prevention comes to the fore because the earthquake does damage to structures and causes severe damage of human life. For the earthquake prevention, a real-time vibration measurement for structures is important. As an example, the United States of America and Japan have already been monitoring real-time earthquake acceleration for the important structures and the measured acceleration data has been managed by forming database. This database could be used for revising the seismic design specifications or predicting the damage caused by earthquake. In Korea, Earthquake Recovery Plans Act and Enforcement Regulations are revised and declared lately. Ministry of Public Safety and Security is constructing a integrated management system for the measured earthquake acceleration data. The purpose of this research is to develop a real-time vibration monitoring and analysis system for structures which links to the integrated management system. The developed system contains not only a monitoring function to show real-time acceleration data but also an analysis system to perform fast fourier transform, to obtain natural frequency and earthquake magnitude, to show response spectrum and power spectrum, and to evaluate structural health. Additionally, this system is designed to be able to link to the integrated management system of Ministry of Public Safety and Security. It is concluded that the developed system can be useful to build a safety management network, minimize maintenance cost of structures, and prevention of the structural damage due to earthquake.

Smart System Identification of Super High-Rise Buildings using Limited Vibration Data during the 2011 Tohoku Earthquake

  • Ikeda, A.;Minami, Y.;Fujita, K.;Takewaki, I.
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.4
    • /
    • pp.255-271
    • /
    • 2014
  • A method of smart system identification of super high-rise buildings is proposed in which super high-rise buildings are modeled by a shear-bending system. The method is aimed at finding the story shear and bending stiffnesses of a specific story only from the horizontal floor accelerations. The proposed method uses a set of closed-form expressions for the story shear and bending stiffnesses in terms of the limited floor accelerations and utilizes a reduced shear-bending system with the same number of elements as the observation points. A difficulty of prediction of an unstable specific function in a low frequency range can be overcome by introducing an ARX model and discussing its relation with the Taylor series expansion coefficients of a transfer function. It is demonstrated that the shear-bending system can simulate the vibration records with a reasonable accuracy. It is also shown that the vibration records at two super high-rise buildings during the 2011 Tohoku (Japan) earthquake can be simulated with the proposed method including a technique of inserting degrees of freedom between the vibration recording points. Finally it is discussed further that the time-varying identification of fundamental natural period and stiffnesses can be conducted by setting an appropriate duration of evaluation in the batch least-squares method.