• Title/Summary/Keyword: structural hazards

Search Result 124, Processing Time 0.03 seconds

Collapse risk evaluation method on Bayesian network prediction model and engineering application

  • WANG, Jing;LI, Shucai;LI, Liping;SHI, Shaoshuai;XU, Zhenhao;LIN, Peng
    • Advances in Computational Design
    • /
    • v.2 no.2
    • /
    • pp.121-131
    • /
    • 2017
  • Collapse was one of the typical common geological hazards during the construction of tunnels. The risk assessment of collapse was an effective way to ensure the safety of tunnels. We established a prediction model of collapse based on Bayesian Network. 76 large or medium collapses in China were analyzed. The variable set and range of the model were determined according to the statistics. A collapse prediction software was developed and its veracity was also evaluated. At last the software was used to predict tunnel collapses. It effectively evaded the disaster. Establishing the platform can be subsequent perfect. The platform can also be applied to the risk assessment of other tunnel engineering.

State-of-the-art of semiactive control systems using MR fluid dampers in civil engineering applications

  • Jung, H.J.;Spencer, B.F. Jr.;Ni, Y.Q.;Lee, I.W.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.3_4
    • /
    • pp.493-526
    • /
    • 2004
  • Semiactive control systems have received considerable attention for protecting structures against natural hazards such as strong earthquakes and high winds, because they not only offer the reliability of passive control systems but also maintain the versatility and adaptability of fully active control systems. Among the many semiactive control devices, magnetorheological (MR) fluid dampers comprise one particularly promising class. In the field of civil engineering, much research and development on MR fluid damper-based control systems has been conducted since this unique semiactive device was first introduced to civil engineering applications in mid 1990s. In 2001, MR fluid dampers were applied to the full-scale in-service civil engineering structures for the first time. This state-of-the-art paper includes a detailed literature review of dynamic models of MR fluid dampers for describing their complex dynamic behavior and control algorithms considering the characteristics of MR fluid dampers. This extensive review provides references to semiactive control systems using MR fluid dampers. The MR fluid damper-based semiactive control systems are shown to have the potential for mitigating the responses of full-scale civil engineering structures under natural hazards.

Review of Resilience-Based Design

  • Ademovic, Naida;Ibrahimbegovic, Adnan
    • Coupled systems mechanics
    • /
    • v.9 no.2
    • /
    • pp.91-110
    • /
    • 2020
  • The reliability of structures is affected by various impacts that generally have a negative effect, from extreme weather conditions, due to climate change to natural or man-made hazards. In recent years, extreme loading has had an enormous impact on the resilience of structures as one of the most important characteristics of the sound design of structures, besides the structural integrity and robustness. Resilience can be defined as the ability of the structure to absorb or avoid damage without suffering complete failure, and it can be chosen as the main objective of design, maintenance and restoration for structures and infrastructure. The latter needs further clarification (which is done in this paper), to achieve the clarity of goals compared to robustness which is defined in Eurocode EN 1991-1-7 as: "the ability of a structure to withstand events like fire, explosions, impact or the consequences of human error, without being damaged to an extent disproportionate to the original cause". Many existing structures are more vulnerable to the natural or man-made hazards due to their material deterioration, and a further decrease of its loadbearing capacity, modifying the structural performance and functionality and, subsequently, the system resilience. Due to currently frequent extreme events, the design philosophy is shifting from Performance-Based Design to Resilience-Based Design and from unit to system (community) resilience. The paper provides an overview of such design evolution with indicative needs for Resilience-Based Design giving few conducted examples.

Multi-sensor data fusion based assessment on shield tunnel safety

  • Huang, Hongwei;Xie, Xin;Zhang, Dongming;Liu, Zhongqiang;Lacasse, Suzanne
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.693-707
    • /
    • 2019
  • This paper proposes an integrated safety assessment method that can take multiple sources data into consideration based on a data fusion approach. Data cleaning using the Kalman filter method (KF) was conducted first for monitoring data from each sensor. The inclination data from the four tilt sensors of the same monitoring section have been associated to synchronize in time. Secondly, the finite element method (FEM) model was established to physically correlate the external forces with various structural responses of the shield tunnel, including the measured inclination. Response surface method (RSM) was adopted to express the relationship between external forces and the structural responses. Then, the external forces were updated based on the in situ monitoring data from tilt sensors using the extended Kalman filter method (EKF). Finally, mechanics parameters of the tunnel lining were estimated based on the updated data to make an integrated safety assessment. An application example of the proposed method was presented for an urban tunnel during a nearby deep excavation with multiple source monitoring plans. The change of tunnel convergence, bolt stress and segment internal forces can also be calculated based on the real time deformation monitoring of the shield tunnel. The proposed method was verified by predicting the data using the other three sensors in the same section. The correlation among different monitoring data has been discussed before the conclusion was drawn.

Multihazard capacity optimization of an NPP using a multi-objective genetic algorithm and sampling-based PSA

  • Eujeong Choi;Shinyoung Kwag;Daegi Hahm
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.644-654
    • /
    • 2024
  • After the Tohoku earthquake and tsunami (Japan, 2011), regulatory efforts to mitigate external hazards have increased both the safety requirements and the total capital cost of nuclear power plants (NPPs). In these circumstances, identifying not only disaster robustness but also cost-effective capacity setting of NPPs has become one of the most important tasks for the nuclear power industry. A few studies have been performed to relocate the seismic capacity of NPPs, yet the effects of multiple hazards have not been accounted for in NPP capacity optimization. The major challenges in extending this problem to the multihazard dimension are (1) the high computational costs for both multihazard risk quantification and system-level optimization and (2) the lack of capital cost databases of NPPs. To resolve these issues, this paper proposes an effective method that identifies the optimal multihazard capacity of NPPs using a multi-objective genetic algorithm and the two-stage direct quantification of fault trees using Monte Carlo simulation method, called the two-stage DQFM. Also, a capacity-based indirect capital cost measure is proposed. Such a proposed method enables NPP to achieve safety and cost-effectiveness against multi-hazard simultaneously within the computationally efficient platform. The proposed multihazard capacity optimization framework is demonstrated and tested with an earthquake-tsunami example.

Bio-inspired self powered nervous system for civil structures

  • Shoureshi, Rahmat A.;Lim, Sun W.
    • Smart Structures and Systems
    • /
    • v.5 no.2
    • /
    • pp.139-152
    • /
    • 2009
  • Globally, civil infrastructures are deteriorating at an alarming rate caused by overuse, overloading, aging, damage or failure due to natural or man-made hazards. With such a vast network of deteriorating infrastructure, there is a growing interest in continuous monitoring technologies. In order to provide a true distributed sensor and control system for civil structures, we are developing a Structural Nervous System that mimics key attributes of a human nervous system. This nervous system is made up of building blocks that are designed based on mechanoreceptors as a fundamentally new approach for the development of a structural health monitoring and diagnostic system that utilizes the recently developed piezo-fibers capable of sensing and actuation. In particular, our research has been focused on producing a sensory nervous system for civil structures by using piezo-fibers as sensory receptors, nerve fibers, neuronal pools, and spinocervical tract to the nodal and central processing units. This paper presents up to date results of our research, including the design and analysis of the structural nervous system.

Performance assessment of multi-hazard resistance of Smart Outrigger Damper System (스마트 아웃리거 댐퍼시스템의 멀티해저드 저항성능평가)

  • Kim, Hyun-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.139-145
    • /
    • 2018
  • An outrigger system is used widely to increase the lateral stiffness of high-rise buildings, resulting in reduced dynamic responses to seismic or wind loads. Because the dynamic characteristics of earthquake or wind loads are quite different, a smart vibration control system associated with an outrigger system can be used effectively for both seismic and wind excitation. In this study, an adaptive smart structural control system based on an outrigger damper system was investigated for the response reduction of multi-hazards, including seismic and wind loads. A MR damper was employed to develop the smart outrigger damper system. Three cities in the U.S., L.A., Charleston, and Anchorage, were used to generate multi-hazard earthquake and wind loads. Parametric studies on the MR damper capacity were performed to investigate the optimal design of the smart outrigger damper system. A smart control algorithm was developed using a fuzzy controller optimized by a genetic algorithm. The analytical results showed that an adaptive smart structural control system based on an outrigger damper system can provide good control performance for multi-hazards of earthquake and wind loads.

Risk Assessment of the Ship′s Collision using Formal Safety Assessment Methodology (공식안전평가시스템에 의한 선박 충돌사고 위험성 평가에 관한 연구( I ))

  • 양원재;전승환;금종수
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.7 no.3
    • /
    • pp.61-74
    • /
    • 2001
  • The prevention of marine accidents has been a major topic in marine society and various policies and countermeasures has been developed, applied to the industries. Formal Safety Assessment is a structured and systematic methodology, aimed at enhancing maritime safety, including protection of life, health, the marine environment and property, by using risk and cost-benefit assessments. In addition, it provides a means of being proactive, enabling potential hazards to be considered before a serious accident occurs. In this paper, we has been screening and ranking of hazards using fuzzy structural modeling method and quantitative risk assessment for the ship's collision in the last 10 years marine accidents.

  • PDF

Assessment of Post-Earthquake Fire Behavior of a Steel MRF Building in a Low Seismic Region

  • Chicchi, Rachel;Varma, Amit
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1470-1481
    • /
    • 2018
  • Building-level response to post-earthquake fire hazards in steel buildings has been assessed using primarily two-dimensional analyses of the lateral force resisting system. This approach may not adequately consider potential vulnerabilities in the gravity framing system. For this reason, three-dimensional (3D) finite element models of a 10-story case study building with perimeter moment resisting frames were developed to analyze post-earthquake fire events and better understand building response. Earthquakes are simulated using ground motion time histories, while Eurocode parametric time-temperature curves are used to represent compartment fires. Incremental dynamic analysis and incremental fire analysis procedures capture a range of hazard intensities. Findings show that the structural response due to earthquake and fire hazards are somewhat decoupled from one another. Regardless of the level of plastic hinging present in the moment framing system due to a seismic event, gravity column failure is the initiating failure mode in a fire event.

An Ideal strain gage placement plan for structural health monitoring under seismic loadings

  • Vafaei, Mohammadreza;Alih, Sophia C.
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.541-553
    • /
    • 2015
  • Structural Health Monitoring (SHM) systems can provide valuable information regarding the safety of structures during and after ground motions which can be used by authorities to reduce post-earthquake hazards. Strain gages as a key element play an important role in the success of SHM systems. Reducing the number of required strain gages while keeping the efficiency of SHM system not only can reduce the cost of structural health monitoring but also avoids storage and process of uninformative data. In this study, a method based on performance based seismic design of structures is proposed for ideal placement of stain gages in structures. The robustness and efficiency of the proposed method is demonstrated through installation of strain gages on an Airport Traffic Control (ATC) Tower. The obtained results show that the number of required strain gages decrease significantly.