• Title/Summary/Keyword: structural fuse

Search Result 39, Processing Time 0.018 seconds

Effect of flexural and shear stresses simultaneously for optimized design of butterfly-shaped dampers: Computational study

  • Farzampour, Alireza;Eatherton, Matthew R.;Mansouri, Iman;Hu, Jong Wan
    • Smart Structures and Systems
    • /
    • v.23 no.4
    • /
    • pp.329-335
    • /
    • 2019
  • Structural fuses are made up from oriented steel plates to be used to resist seismic force with shear loading resistance capabilities. The damage and excessive inelastic deformations are concentrated in structural fuses to avoid any issues for the rest of the surrounding elements. Recently developed fuse plates are designed with engineered cutouts leaving flexural or shear links with controlled yielding features. A promising type of link is proposed to align better bending strength along the length of the link with the demand moment diagram is a butterfly-shaped link. Previously, the design methodologies are purely based on the flexural stresses, or shear stresses only, which overestimate the dampers capability for resisting against the applied loadings. This study is specifically focused on the optimized design methodologies for commonly used butterfly-shaped dampers. Numerous studies have shown that the stresses are not uniformly distributed along the length of the dampers; hence, the design methodology and the effective implementation of the steel need revisions and improvements. In this study, the effect of shear and flexural stresses on the behavior of butterfly-shaped links are computationally investigated. The mathematical models based on von-Mises yielding criteria are initially developed and the optimized design methodology is proposed based on the yielding criterion. The optimized design is refined and investigated with the aid of computational investigations in the next step. The proposed design methodology meets the needs of optimized design concepts for butterfly-shaped dampers considering the uniform stress distribution and efficient use of steel.

독성물질 검출을 위한 Plasmid Vector 개발

  • Choi, Yeon Joo;You, Jin Sam;Ha, Jin Mok;Baik, Hyung Suk
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.2
    • /
    • pp.144-150
    • /
    • 1997
  • After DNA damage, umuDC is the only SOS operon that must be induced to promote SOS mutagenesis in Escherichia coli. The recombinant plasmid pBC401 and pBC402 were constructed to fuse the lac structural genes with promoter region of umuDC operon to induce the expression of lacZ gene by DNA damage. We transformed the plasmid pBC401 and pBC402 into E. coli MC1061, lacZ deleted strain and determined the activity of $\beta$-galactosidase for various mutagen; UV, mitomycin C (MMC), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), 4-nitroqunoline-1-oxide (NQO), ethyl methanesulfonate (EMS). The $\beta$-galactosidase activities of PBC401 and pBC402 for UV, MMC, and NQO were increased in proportion to expression time until 3 hours thereafter, the activities were constant or slightly decreased. The activities for MNNG and EMS were not so high as for UV, MMC, and NQO. When MNNG and EMS were treated, $\beta$-galactosidase activity of pBC402 was slightly lower than pBC401 but when UV, MMC, and NQO were treated in pBC402, $\beta$-galactosidase activity was slightly higher than in pBC401. Therefore, the pBC402 was better than the pBC401 in terms of sensitivity for frameshift mutagen. We suggest that the plasmid pBC401 and pBC402 are easy to detect mutagens which cause frameshift mutation rather than point mutation.

  • PDF

Seismic performance of a resilient low-damage base isolation system under combined vertical and horizontal excitations

  • Farsangi, Ehsan Noroozinejad;Tasnimi, Abbas Ali;Yang, T.Y.;Takewaki, Izuru;Mohammadhasani, Mohammad
    • Smart Structures and Systems
    • /
    • v.22 no.4
    • /
    • pp.383-397
    • /
    • 2018
  • Traditional base isolation systems focus on isolating the seismic response of a structure in the horizontal direction. However, in regions where the vertical earthquake excitation is significant (such as near-fault region), a traditional base-isolated building exhibits a significant vertical vibration. To eliminate this shortcoming, a rocking-isolated system named Telescopic Column (TC) is proposed in this paper. Detailed rocking and isolation mechanism of the TC system is presented. The seismic performance of the TC is compared with the traditional elastomeric bearing (EB) and friction pendulum (FP) base-isolated systems. A 4-storey reinforced concrete moment-resisting frame (RC-MRF) is selected as the reference superstructure. The seismic response of the reference superstructure in terms of column axial forces, base shears, floor accelerations, inter-storey drift ratios (IDR) and collapse margin ratios (CMRs) are evaluated using OpenSees. The results of the nonlinear dynamic analysis subjected to multi-directional earthquake excitations show that the superstructure equipped with the newly proposed TC is more resilient and exhibits a superior response with higher margin of safety against collapse when compared with the same superstructure with the traditional base-isolation (BI) system.

Evaluating the performance of OBS-C-O in steel frames under monotonic load

  • Bazzaz, Mohammad;Andalib, Zahra;Kafi, Mohammad Ali;Kheyroddin, Ali
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.699-712
    • /
    • 2015
  • Bracing structures with off-centre bracing system is one of the new resistant systems that frequently used in the frame with pin connections. High ductility, high-energy dissipation and decrease of base shear are advantages of this bracing system. However, beside these advantages, reconstruction and hard repair of off-centre bracing system cause inappropriate performance in the earthquake. Therefore, in this paper, the goal is investigating the behavior of this type of bracing system with ductile element (circular dissipater), in order to providing replacement of damaged member without needing repair or reconstruction of the general system. To achieve this purpose, some numerical studies have been performed using ANSYS software, a frame with off-centre bracing system and optimum eccentricity (OBS-C-O) and another frame with the same identifications without ductile element (OBS) has been created. In order to investigate precisely on the optimum placement of circular elements under monotonic load again three steal frames were modeled. Furthermore, the behavior of this general system investigated for the first time, linear and nonlinear behavior of these two steel frames compared to each other, to achieve the benefit of using the circular element in an off-centre bracing system. Eventually, the analytical results revealed that the performance of steel ring at the end of off-centre braces system illustrating as a first defensive line and buckling fuse in the off-centre bracing system.

Application of Energy-Dissipating Sacrificial Device(EDSD) for Enhancing Seismic Performance of Bridges (교량의 내진성능 향상을 위한 희생부재형 에너지소산장치(EDSD)의 적용에 관한 연구)

  • Kim, Sang-Hyo;Cho, Kwang-Yil;Kim, Hae-Young
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.445-452
    • /
    • 2006
  • A new Energy-Dissipating Sacrificial Device(EDSD) is proposed, which can effectively dissipate the energy stored in the structures during seismic actions. A mathematical 3-D bridge models and analysis techniques are developed to represent the non-linear behavior of the EDSD, various seismic responses of a sample bridge with the EDSD are analyzed in terms of energy, member forces and deformation using the developed analysis method. And the EDSD is tested and certified it's behavior and stability to apply on exiting bridges. The EDSD can be able to dissipate a large amount of energy and therefore it can prevent the pier's excessive forces under seismic excitations and EDSD and its connected members are also stable. Additionally, the method and guidelines of an optimum EDSD design are proposed in terms of installation method and decision of number of EDSD. The Proposed EDSD under seismic excitations can significantly decrease the excessive storing energy in the bridge structures and reduce the relative displacements of each superstructure to the ground. The EDSD is also found to function as a structural fuse under strong ground motions, sacrificing itself to absorb the excessive energy. Consequently, economical enhancement of the seismic performance of bridges can be achieved by employing the newly developed energy dissipation sacrificial device(EDSD).

  • PDF

Experimental study on innovative tubular web RBS connections in steel MRFs with typical shallow beams

  • Saleh, Aboozar;Zahrai, Seyed M.;Mirghaderi, Seyed R.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.5
    • /
    • pp.785-808
    • /
    • 2016
  • An innovative Reduced Beam Section (RBS) connection, called Tubular Web RBS connection (TW-RBS), has been recently introduced and its performance has been numerically investigated in some earlier studies. The TW-RBS connection is a kind of accordion-web RBS connection in which part of the flat web of the beam is replaced by a steel tube at the expected region of the plastic hinge. This paper presents experimental results of three TW-RBS connections under cyclic loading. Obtained results indicated that TW-RBS reduces contribution of the beam web to the whole moment strength and creates a ductile fuse far from components of the beam-to-column connection. Besides, TW-RBS connection can increase story drift capacity up to 9% in the case of shallow beams which is much more than those stipulated by the current seismic codes. Based on the experimental results, the tubular web in the plastic hinge region improves lateral-torsional buckling stability of the beam such that only local buckling of the beam flange at the center of the reduced section was observed during the tests. In order to achieve a better understanding, behavior of all TW-RBS specimens are also numerically investigated and compared with those of experimental results.

Experimental validation of Kalman filter-based strain estimation in structures subjected to non-zero mean input

  • Palanisamy, Rajendra P.;Cho, Soojin;Kim, Hyunjun;Sim, Sung-Han
    • Smart Structures and Systems
    • /
    • v.15 no.2
    • /
    • pp.489-503
    • /
    • 2015
  • Response estimation at unmeasured locations using the limited number of measurements is an attractive topic in the field of structural health monitoring (SHM). Because of increasing complexity and size of civil engineering structures, measuring all structural responses from the entire body is intractable for the SHM purpose; the response estimation can be an effective and practical alternative. This paper investigates a response estimation technique based on the Kalman state estimator to combine multi-sensor data under non-zero mean input excitations. The Kalman state estimator, constructed based on the finite element (FE) model of a structure, can efficiently fuse different types of data of acceleration, strain, and tilt responses, minimizing the intrinsic measurement noise. This study focuses on the effects of (a) FE model error and (b) combinations of multi-sensor data on the estimation accuracy in the case of non-zero mean input excitations. The FE model error is purposefully introduced for more realistic performance evaluation of the response estimation using the Kalman state estimator. In addition, four types of measurement combinations are explored in the response estimation: strain only, acceleration only, acceleration and strain, and acceleration and tilt. The performance of the response estimation approach is verified by numerical and experimental tests on a simply-supported beam, showing that it can successfully estimate strain responses at unmeasured locations with the highest performance in the combination of acceleration and tilt.

Cyclic loading behavior of high-strength steel framed-tube structures with replaceable shear links constructed using Q355 structural steel

  • Guo, Yan;Lian, Ming;Zhang, Hao;Cheng, Qianqian
    • Steel and Composite Structures
    • /
    • v.42 no.6
    • /
    • pp.827-841
    • /
    • 2022
  • The rotation capacities of the plastic hinges located at beam-ends are significantly reduced in traditional steel framed-tube structures (SFTSs) because of the small span-to-depth ratios of the deep beams, leading to the low ductility and energy dissipation capacities of the SFTSs. High-strength steel framed-tube structures with replaceable shear links (HSSFTS-RSLs) are proposed to address this issue. A replaceable shear link is located at the mid-span of a deep spandrel beam to act as a ductile fuse to dissipate the seismic energy in HSSFTS-RSLs. A 2/3-scaled HSSFTS-RSL specimen with a shear link fabricated of high-strength low-alloy Q355 structural steel was created, and a cyclic loading test was performed to study the hysteresis behaviors of this specimen. The test results were compared to the specimens with soft steel shear links in previous studies to investigate the feasibility of using high-strength low-alloy steel for shear links in HSSFTS-RSLs. The effects of link web stiffener spaces on the cyclic performance of the HSSFTS-RSLs with Q355 steel shear links were investigated based on the nonlinear numerical analysis. The test results indicate that the specimen with a Q355 steel shear link exhibited a reliable and stable seismic performance. If the maximum interstory drift of HSSFTS-RSL is designed lower than 2% under earthquakes, the HSSFTS-RSLs with Q355 steel shear links can have similar seismic performance to the structures with soft steel shear links, even though these shear links have similar shear and flexural strength. For the Q355 steel shear links with web height-to-thickness ratios higher than 30.7 in HSSFTS-RSLs, it is suggested that the maximum intermediate web stiffener space is decreased by 15% from the allowable space for the shear link in AISC341-16 due to the analytical results.

Nonlinear finite element modeling of the self-centering steel moment connection with cushion flexural damper

  • Ali Nazeri;Reza Vahdani;Mohammad Ali Kafi
    • Structural Engineering and Mechanics
    • /
    • v.87 no.2
    • /
    • pp.151-164
    • /
    • 2023
  • The latest earthquake's costly repairs and economic disruption were brought on by excessive residual drift. Self-centering systems are one of the most efficient ways in the current generation of seismic resistance system to get rid of and reduce residual drift. The mechanics and behavior of the self-centering system in response to seismic forces were impacted by a number of important factors. The amount of post-tensioning (PT) force, which is often employed for the standing posture after an earthquake, is the first important component. The energy dissipater element is another one that has a significant impact on how the self-centering system behaves. Using the damper as a replaceable and affordable tool and fuse in self-centering frames has been recommended to boost energy absorption and dampening of structural systems during earthquakes. In this research, the self-centering steel moment frame connections are equipped with cushion flexural dampers (CFDs) as an energy dissipator system to increase energy absorption, post-yielding stiffness, and ease replacement after an earthquake. Also, it has been carefully considered how to reduce permanent deformations in the self-centering steel moment frames exposed to seismic loads while maintaining adequate stiffness, strength, and ductility. After confirming the FE model's findings with an earlier experimental PT connection, the behavior of the self-centering connection using CFD has been surveyed in this study. The FE modeling takes into account strands preloading as well as geometric and material nonlinearities. In addition to contact and sliding phenomena, gap opening and closing actions are included in the models. According to the findings, self-centering moment-resisting frames (SF-MRF) combined with CFD enhance post-yielding stiffness and energy absorption with the least amount of permeant deformation in a certain CFD thickness. The obtained findings demonstrate that the effective energy dissipation ratio (β), is increased to 0.25% while also lowering the residual drift to less than 0.5%. Also, this enhancement in the self-centering connection with CFD's seismic performance was attained with a respectable moment capacity to beam plastic moment capacity ratio.

Structural and Functional Roles of AIMP2 and TRAF2 in TNF-α Signaling (TNF-α 신호에서 AIMP2와 TRAF2의 구조적 및 기능적 역할)

  • Kim, Hyeon Jin;Jeong, Mi Suk;Jang, Se Bok
    • Journal of Life Science
    • /
    • v.30 no.1
    • /
    • pp.106-112
    • /
    • 2020
  • Aminoacyl tRNA synthetase complex interacting multifunctional protein 2 (AIMP2) is a scaffolding protein required for the assembly of multi-tRNA synthetase, and it can exert pro-apoptotic activity in response to DNA damage. In the presence of DNA damage, AIMP2 binds to mouse double minute 2 homolog (MDM2) to protect p53 from MDM2 attack. TGF-β signaling results in the nuclear translocation of AIMP2, whereby AIMP2 interacts with FUSE-binding protein, and, thus, suppresses c-myc. TNF receptor-associated factor 2 (TRAF2) is an important mediator between TNF-receptors 1 and 2 which are involved in the signaling of c-Jun N-terminal kinase (JNK), nuclear factor κB (NF-κB), and p38 mitogen-activated protein kinases (MAPKs). TRAF2 is required for the activations of JNK and NF-κB via TNF-α and the mediation of anti-apoptosis signaling. AIMP2 can also enhance pro-apoptosis in the TNF-α signaling. During this signaling, AIMP2 assists the association of E3 ubiquitin ligase, the cellular inhibitor of apoptosis protein 1 (c-IAP1) which is well known and responsible for the degradation of TRAF2. The formation of a complex among AIMP2, TRAF2, and c-IAP1 results in proteasome-mediated TRAF2 degradation. AIMP2 can induce apoptosis via downregulation of TRAF2 to interact directly in TNF-α signaling. This review provides new insight into the molecular mechanism responsible for AIMP2 and TRAF2 complex formation and treatments for TNFα-associated diseases.