• 제목/요약/키워드: structural feasibility

검색결과 700건 처리시간 0.032초

심방세동의 최신 외과적 치료 (Recent Advances in Surgery for Atrial Fibrillation)

  • 이동협;정태은
    • Journal of Yeungnam Medical Science
    • /
    • 제22권1호
    • /
    • pp.13-26
    • /
    • 2005
  • Atrial fibrillation (AF) is the most common cardiac rhythm disturbance, which carries significant cardiovascular morbidity and mortality. The medical treatment for AF is cumbersome and unsatisfactory, which has highlighted the need to develop alternative treatments for AF. The recent discovery that AF is often initiated by atrial ectopic beats has resulted in treatments designed to target the ectopic sources, particularly those within the pulmonary veins. Building on the pioneering work of Cox et al., a recent reported series demonstrated the feasibility of treating patients undergoing cardiac surgery for other structural heart diseases with limited, left-atrial ablation lesion sets using alternative energy sources. As less complex modifications of the Maze procedure have been developed, a number of energy sources have been introduced to create of electrically isolating lesions within the atria. These sources have been used both endocardially in arrest heart procedures as well as epicardially in a beating heart setting. This review summarizes the recent advances in surgery for AF that will aid in the development of an effective, minimally invasive surgical procedure to cure patients with AF.

  • PDF

Vibration control parameters investigation of the Mega-Sub Controlled Structure System (MSCSS)

  • Limazie, Toi;Zhang, Xun'an;Wang, Xianjie
    • Earthquakes and Structures
    • /
    • 제5권2호
    • /
    • pp.225-237
    • /
    • 2013
  • Excessive vibrations induced by earthquake excitation and wind load are an obstacle in design and construction of tall and super tall buildings. An innovative vibration control structure system (Mega-Sub Controlled Structure System-MSCSS) was recently proposed to further improve humans comfort and their safeties during natural disasters. Preliminary investigations were performed using a two dimensional equivalent simplified model, composed by 3 mega-stories. In this paper, a more reasonable and realistic scaled model is design to investigate the dynamical characteristics and controlling performances of this structure when subjected to strong earthquake motion. The control parameters of the structure system, such as the modulated sub-structures disposition; the damping coefficient ratio (RC); the stiffness ratio (RD); the mass ratio of the mega-structure and sub-structure (RM) are investigated and their optimal values (matched values) are obtained. The MSCSS is also compared with the so-called Mega-Sub Structure (MSS) regarding their displacement and acceleration responses when subjected to the same load conditions. Through the nonlinear time history analysis, the effectiveness and the feasibility of the proposed mega-sub controlled structure system (MSCSS) is demonstrated in reducing the displacement and acceleration responses and also improving human comfort under earthquake loads.

The Financial Behavior of Investment Decision Making Between Real and Financial Assets Sectors

  • HALA, Yusriadi;ABDULLAH, Muhammad Wahyuddin;ANDAYANI, Wuryan;ILYAS, Gunawan Bata;AKOB, Muhammad
    • The Journal of Asian Finance, Economics and Business
    • /
    • 제7권12호
    • /
    • pp.635-645
    • /
    • 2020
  • This research was conducted to achieve several objectives and focus research was based on financial behavior theory and prospect theory as grounded theory e.g., investigate the financial decision-making behavior between financial and real assets investment, and confirm the relationship existing between herding behavior and overconfidence factors to the level of loss and regret aversion, and financial literacy into real assets investment decisions. The study used 220 real estate auction respondents as investor samples at the State Assets and Auction Service Office Makassar, South Sulawesi, Indonesia. Data was collected through the use of a questionnaire consisting of 23 questions to measure the variables. Moreover, the research data passed through several feasibility tests like the inner and outer modeling by Partial Least Square - Structural equation model (PLS-SEM) while the hypotheses formulated were also tested to determine the magnitude of the variable relationship. Through the use of the direct and intervening test, loss and regret aversion variables have a positive and significant effect while financial literacy variables have no significant effect. There is a slight difference in the decision-making process for real assets and financial assets investors. Investment decision making behavior in the financial assets sector requires less complicated decisions compared to the decisions related to real assets investments.

Ionic Liquid Pretreatment of Lignocellulosic Biomass

  • Han, Song-Yi;Park, Chan-Woo;Kwon, Gu-Joong;Kim, Nam-Hun;Kim, Jin-Chul;Lee, Seung-Hwan
    • Journal of Forest and Environmental Science
    • /
    • 제36권2호
    • /
    • pp.69-77
    • /
    • 2020
  • Lignocellulosic biomass has recalcitrant characteristics against chemical and biological conversion due to its structural heterogeneity and complexity. The pretreatment process to overcome these recalcitrant properties is essential, especially for the biochemical conversion of lignocellulosic biomass. In recent years, pretreatment methods using ionic liquids (ILs) and deep eutectic solvents (DESs) as the green solvent has attracted great attention because of their advantages such as easy recovery, chemical stability, temperature stability, nonflammability, low vapor pressure, and wide liquids range. However, there are some limitations such as high viscosity, poor economical feasibility, etc. to be solved for practical use. This paper reviewed the research activities on the pretreatment effect of various ILs including DESs and their co-solvents with organic solvents on the enzymatic saccharification efficiency of lignocellulosic biomass and the nanocellulose preparation from the pretreated products.

Adaptive symbiotic organisms search (SOS) algorithm for structural design optimization

  • Tejani, Ghanshyam G.;Savsani, Vimal J.;Patel, Vivek K.
    • Journal of Computational Design and Engineering
    • /
    • 제3권3호
    • /
    • pp.226-249
    • /
    • 2016
  • The symbiotic organisms search (SOS) algorithm is an effective metaheuristic developed in 2014, which mimics the symbiotic relationship among the living beings, such as mutualism, commensalism, and parasitism, to survive in the ecosystem. In this study, three modified versions of the SOS algorithm are proposed by introducing adaptive benefit factors in the basic SOS algorithm to improve its efficiency. The basic SOS algorithm only considers benefit factors, whereas the proposed variants of the SOS algorithm, consider effective combinations of adaptive benefit factors and benefit factors to study their competence to lay down a good balance between exploration and exploitation of the search space. The proposed algorithms are tested to suit its applications to the engineering structures subjected to dynamic excitation, which may lead to undesirable vibrations. Structure optimization problems become more challenging if the shape and size variables are taken into account along with the frequency. To check the feasibility and effectiveness of the proposed algorithms, six different planar and space trusses are subjected to experimental analysis. The results obtained using the proposed methods are compared with those obtained using other optimization methods well established in the literature. The results reveal that the adaptive SOS algorithm is more reliable and efficient than the basic SOS algorithm and other state-of-the-art algorithms.

Optimum control system for earthquake-excited building structures with minimal number of actuators and sensors

  • He, Jia;Xu, You-Lin;Zhang, Chao-Dong;Zhang, Xiao-Hua
    • Smart Structures and Systems
    • /
    • 제16권6호
    • /
    • pp.981-1002
    • /
    • 2015
  • For vibration control of civil structures, especially large civil structures, one of the important issues is how to place a minimal number of actuators and sensors at their respective optimal locations to achieve the predetermined control performance. In this paper, a methodology is presented for the determination of the minimal number and optimal location of actuators and sensors for vibration control of building structures under earthquake excitation. In the proposed methodology, the number and location of the actuators are first determined in terms of the sequence of performance index increments and the predetermined control performance. A multi-scale response reconstruction method is then extended to the controlled building structure for the determination of the minimal number and optimal placement of sensors with the objective that the reconstructed structural responses can be used as feedbacks for the vibration control while the predetermined control performance can be maintained. The feasibility and accuracy of the proposed methodology are finally investigated numerically through a 20-story shear building structure under the El-Centro ground excitation and the Kobe ground excitation. The numerical results show that with the limited number of sensors and actuators at their optimal locations, the predetermined control performance of the building structure can be achieved.

Experimental evaluation of the active tension bolt

  • Kim, Sang-Hwan;Song, Ki-Il;Park, Jae-Hyun
    • Geomechanics and Engineering
    • /
    • 제11권2호
    • /
    • pp.177-195
    • /
    • 2016
  • To secure the stability of geotechnical infrastructures and minimize failures during the construction process, a number of support systems have been introduced in the last several decades. In particular, stabilization methods using steel bars have been widely used in the field of geotechnical engineering. Rock bolt system is representative support system using steel bars. Pre-stressing has been applied to enhance reinforcement performance but can be released because of the failure of head or anchor sections. To overcome this deficiency, this paper proposes an innovative support system that can actively reinforce the weak ground along the whole structural element by introducing an active tension bolt containing a spring unit to the middle of the steel bar to increase its reinforcement capacity. In addition, the paper presents the support mechanism of the active tension bolt based on a theoretical study and employs an experimental study to validate the performance of the proposed active tension bolt based on a down-scaled model. To examine the feasibility of the active tension unit in a pillar, the paper considers a pullout test and a small-scale experimental model. The experimental results suggest the active tension bolt to be an effective support system for pillar reinforcement.

헬리콥터 시뮬레이터용 6자유도 전기식 운동구현장치의 개발 (Development of the 6-DOF Electrical Motion Platform System for Helicopter Simulator)

  • 한동주;남기욱;김국재;김옥구;전향식
    • 한국항공우주학회지
    • /
    • 제34권12호
    • /
    • pp.75-81
    • /
    • 2006
  • 민간항공안전국 등급 2를 만족하는 헬리콥터 시뮬레이터에 사용되는 6자유도 운동구현장치 개발에 관해 기술하였다. 운동판과 제어 구동장치의 기구학적 및 구조적 해석을 통해 설계 제작된 운동구현장치의 시험 평가로부터 규정에 만족하는 결과를 보였고 이로부터 실제 헬리콥터 시뮬레이터로의 적용 타당성을 확보하였다. 또한 동품의 개발 결과로 인해 그간 유압 구동체계를 사용한 운동구현장치의 단점을 전기식 구동장치 적용을 통해 새롭게 개선함과 동시에 국내 최초로 10 톤급의 적재하중 능력을 보유한 6자유도 운동구현장치를 보급하게 되는 계기를 마련하였다.

Dynamic Stress Analysis of Vehicle Frame Using a Nonlinear Finite Element Method

  • Kim, Gyu-Ha;Cho, Kyu-Zong;Chyun, In-Bum;Park, Seob
    • Journal of Mechanical Science and Technology
    • /
    • 제17권10호
    • /
    • pp.1450-1457
    • /
    • 2003
  • Structural integrity of either a passenger car or a light truck is one of the basic requirements for a full vehicle engineering and development program. The results of the vehicle product performance are measured in terms of durability, noise/vibration/harshness (NVH), crashworthiness and passenger safety. The level of performance of a vehicle directly affects the marketability, profitability and, most importantly, the future of the automobile manufacturer. In this study, we used the Virtual Proving Ground (VPG) approach for obtaining the dynamic stress or strain history and distribution. The VPG uses a nonlinear, dynamic, finite element code (LS-DYNA) which expands the application boundary outside classic linear, static assumptions. The VPG approach also uses realistic boundary conditions of tire/road surface interactions. To verify the predicted dynamic stress and fatigue critical region, a single bump run test, road load simulation, and field test have been performed. The prediction results were compared with experimental results, and the feasibility of the integrated life prediction methodology was verified.

부존량 및 기술수준 분석을 통한 국내 해상풍력 추진전략 (Strategy for Domestic Offshore Wind Power Development based on the Analysis of Natural Resources and Technology Level)

  • 유무성;강금석;이준신;김지영
    • 신재생에너지
    • /
    • 제6권1호
    • /
    • pp.20-28
    • /
    • 2010
  • Developing the offshore wind farm is essential to meet the national target of the renewable energy and to achieve the green growth in Korea. In this context, KEPRI is now carrying the feasibility study for introducing the offshore wind fam in Korea. Accordingly, it is required to formulate an appropriate strategy, this paper mainly discuss, for this goal. First of all, several preliminary sites for the offshore wind farm are selected based on the evaluation criteria presented herein. In addition, the domestic sub-technological level of key technology sectors associated with the offshore wind power is analyzed. It includes the industries related to wind turbine, grid integration, structural design and construction. Integrating these results, we propose a strategy in order to successfully develop the first offshore wind farm more than 100-MW class in the south-western sea area of Korea.