• 제목/요약/키워드: structural damping

검색결과 1,234건 처리시간 0.022초

Structural Design of Nakanoshima Festival Tower West that Achieved High-Grade Seismic Performance

  • Kumano, Takehito;Yoshida, Satoshi;Saburi, Kazuhiro
    • 국제초고층학회논문집
    • /
    • 제6권3호
    • /
    • pp.217-226
    • /
    • 2017
  • This paper summarizes the structural concept and design of the "Nakanoshima Festival Tower West" in Osaka, Japan, which is 200m high and has a super-high damping system. Its superstructure is mainly composed of a central core and outer tube frames. It has a bottom truss structure at the boundary between the low-rise and mid-rise sections of the building, where the column arrangement is changed. Besides, the high-rise section of the building has a neck truss structure. These truss structures smoothly transfer the axial forces of the columns and reduce the flexural deformations induced by horizontal loads. Oil dampers with extremely high damping capacity are installed in the rigid walls named the "Big Wall Frames" of the low-rise section. Moreover, many braces and damping devices are well arranged in the center core of each story. The damping effects of these devices ensure that all structural members are remain within the elastic range and that story drifts are within 1/150 in large earthquakes. This super-high damping structure in the low-rise section is named the "Damping Layer". The whole structural system is named the "Super Damping Structure". The whole structural systems enhance the building's safety, comfort and Business Continuity Planning (BCP) under large earthquakes.

FE model updating method incorporating damping matrices for structural dynamic modifications

  • Arora, Vikas
    • Structural Engineering and Mechanics
    • /
    • 제52권2호
    • /
    • pp.261-274
    • /
    • 2014
  • An accurate finite element (FE) model of a structure is essential for predicting reliably its dynamic characteristics. Such a model is used to predict the effects of structural modifications for dynamic design of the structure. These modifications may be imposed by design alterations for operating reasons. Most of the model updating techniques neglect damping and so these updated models can't be used for accurate prediction of vibration amplitudes. This paper deals with the basic formulation of damped finite element model updating method and its use for structural dynamic modifications. In this damped damped finite element model updating method, damping matrices are updated along with mass and stiffness matrices. The damping matrices are updated by updating the damping coefficients. A case involving actual measured data for the case of F-shaped test structure, which resembles the skeleton of a drilling machine is used to evaluate the effectiveness of damped FE model updating method for accurate prediction of the vibration levels and thus its use for structural dynamic modifications. It can be concluded from the study that damped updated FE model updating can be used for structural dynamic modifications with confidence.

구조 인텐서티법을 이용한 에어컨 실외기의 제진재 적용 (Damping Patch Placement on Outdoor Unit of Air-conditioner by Using Structural Intensity Technique)

  • 김규식;진심원;정인화;이정우;강연준
    • 한국소음진동공학회논문집
    • /
    • 제14권7호
    • /
    • pp.577-585
    • /
    • 2004
  • In this paper, reactive shearing structural intensity method is extended to damping patches placement on outer panels of outdoor unit of air-conditioner to reduce its structural borne noise. The structural intensity is calculated from the normal velocities of structures that are measured by using a laser scanning vibrometer, and $textsc{k}$-space (wave-number domain) signal processing is used to obtain the spatial derivatives in formulation of structural intensity. This method is applied to the outdoor unit of air-conditioner on shaker-exciting mode and operating mode. and then damping patches are placed over area of high reactive shearing structural intensity for reducing the radiated noise. Experimental results show the largest reduction of sound pressure level of an outdoor unit by appling small damping patches to optimal position.

Optimum study on wind-induced vibration control of high-rise buildings with viscous dampers

  • Zhou, Yun;Wang, DaYang;Deng, XueSong
    • Wind and Structures
    • /
    • 제11권6호
    • /
    • pp.497-512
    • /
    • 2008
  • In this paper, optimum methods of wind-induced vibration control of high-rise buildings are mainly studied. Two optimum methods, genetic algorithms (GA) method and Rayleigh damping method, are firstly employed and proposed to perform optimum study on wind-induced vibration control, six target functions are presented in GA method based on spectrum analysis. Structural optimum analysis programs are developed based on Matlab software to calculate wind-induced structural responses. A high-rise steel building with 20-storey is adopted and 22 kinds of control plans are employed to perform comparison analysis to validate the feasibility and validity of the optimum methods considered. The results show that the distributions of damping coefficients along structural height for mass proportional damping (MPD) systems and stiffness proportional damping (SPD) systems are entirely opposite. Damping systems of MPD and GAMPD (genetic algorithms and mass proportional damping) have the best performance of reducing structural wind-induced vibration response and are superior to other damping systems. Standard deviations of structural responses are influenced greatly by different target functions and the influence is increasing slightly when higher modes are considered, as shown fully in section 5. Therefore, the influence of higher modes should be considered when strict requirement of wind-induced vibration comfort is needed for some special structures.

A Study for Damping Application to Response-controlled Structure

  • Shinozaki, Yozo;Mogi, Yoshihiro;Ota, Masaaki;Yoshikawa, Hiroaki
    • 국제초고층학회논문집
    • /
    • 제10권2호
    • /
    • pp.149-164
    • /
    • 2021
  • Most of high-rise buildings in Japan*1 are structure with damping systems recently. The design procedure is performance-based design (PBD), which is based on the nonlinear response history procedure (NRHP) using 2 or 3-dimentional frame model. In addition, hysteretic property of steel plates or velocity-dependent property of viscous dampers are common practice for the damping system. However, for the selection of damping system, the easy dynamic analysis of recent date may lead the most of engineers to focus attention on the maximum response only without thinking how it shakes. By nature, the seismic design shall be to figure out the action of inertia forces by complex & dynamic loads including periodic and pulse-like characteristics, what we call seismic ground motion. And it shall be done under the dynamic condition. On the contrary, we engineers engineers have constructed the easy-to-use static loads and devoted ourselves to handle them. The structures with damping system shall be designed considering how the stiffness & damping to be applied to the structures against the inertia forces with the viewpoint of dynamic aspect. In this paper we reconsider the role of damping in vibration and give much thought to the basic of shake with damping from a standpoint of structural design. Then, we present some design examples based on them.

Damping identification procedure for linear systems: mixed numerical-experimental approach

  • El-Anwar, Hazem Hossam;Serror, Mohammed Hassanien;Sayed, Hesham Sobhy
    • Earthquakes and Structures
    • /
    • 제4권2호
    • /
    • pp.203-217
    • /
    • 2013
  • In recent decades, it has been realized that increasing the lateral stiffness of structure subjected to lateral loads is not the only parameter enhancing safety or reducing damage. Factors such as ductility and damping govern the structural response due to lateral loads. Despite the significant contribution of damping in resisting lateral loads, especially at resonance, there is no accurate mathematical representation for it. The main objective of this study is to develop a damping identification procedure for linear systems based on a mixed numerical-experimental approach, assuming viscous damping. The proposed procedure has been applied to a laboratory experiment associated with a numerical model, where a hollow rectangular steel cantilever column, having three lumped masses, has been fixed on a shaking table subjected to different exciting waves. The modal damping ratio has been identified; in addition, the effect of adding filling material to the hollow specimen has been studied in relation to damping enhancement. The results have revealed that the numerically computed response based on the identified damping is in a good fitting with the measured response. Moreover, the filling material has a significant effect in increasing the modal damping.

Parametric study on equivalent damping ratio of different composite structural building systems

  • Farghaly, Ahmed Abdelraheem
    • Steel and Composite Structures
    • /
    • 제14권4호
    • /
    • pp.349-365
    • /
    • 2013
  • Structures consisting of concrete and steel parts, which are irregular in damping ratios are investigated. This investigation is a code-based seismic design of such structures. Several practical difficulties encountered, due to inherent differences in the nature of dynamic response of each part, and the different damping ratios of the two parts. These structures are irregular in damping ratios and have complex modes of vibration so that their analysis cannot be handled with the readily available commercial software. Therefore, this work aims to provide simple yet sufficiently accurate constant values of equivalent damping ratios applied to the whole structure for handling the damping irregularity of such structures. The results show that the equivalent damping ratio changes with the height of the building and the kind of the structural system, but it is constant for all accelerations values. Thus, available software SAP2000 applied for seismic analysis, design and the provisions of existing seismic codes. Finally, evaluation of different kinds of structural system used in this research to find the most energy dissipating one found by finding the best value of quality coefficient.

심재의 수직 및 전단 변형을 고려한 알루미늄 하니컴코아 샌드위치 평판의 진동특성 해석 (Effect of Normal and Shear Strains in Core Material on Vibrational Characteristics of Aluminum Honeycomb Core Sandwich Plate)

  • 손충열;김익태;변효인
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2000년도 춘계학술대회 논문집
    • /
    • pp.89-94
    • /
    • 2000
  • Because the structural elements used in the automobile, astronautic and ship industries are put in dynamic loading environments, much interest is given to the damping of the structural elements, as well as high flexural rigidity and strength per density. Therefore, in this study, the structural damping value of the aluminum honeycomb sandwich plate(AHCP) has been experimentally extracted, and directly applied to the finite element, for the dynamic analysis of the plate considering the structural damping. The analysis results of this theory was compared with the results of the actual modal analysis method. It was observable that the two analyses concurred, establishing the structural damping and analysis method of the AHSP.

  • PDF

Dynamic behavior of intake tower considering hydrodynamic damping effect

  • Uddin, Md Ikram;Nahar, Tahmina Tasnim;Kim, Dookie;Kim, Kee-Dong
    • Structural Engineering and Mechanics
    • /
    • 제82권3호
    • /
    • pp.355-367
    • /
    • 2022
  • The effect of hydrodynamic damping on intake tower is twofold: one is fluid damping and another is structural damping. Fluid damping can be derived analytically from the governing equation of the fluid-structure-interaction (FSI) problem which yields a very complicated solution. To avoid the complexity of the FSI problem water-tower system can be simplified by considering water as added mass. However, in such a system a reconsideration of structural damping is required. This study investigates the effects of this damping on the dynamic response of the intake tower, where, apart from the "no water (NW)" condition, six other cases have been adopted depending on water height. Two different cross-sections of the tower are considered and also two different damping properties have been used for each case as well. Dynamic analysis has been carried out using horizontal ground motion as input. Finally, the result shows how hydrodynamic damping affects the dynamic behavior of an intake tower with the change of water height and cross-section. This research will help a designer to consider more conservative damping properties of intake tower which might vary depending on the shape of the tower and height of water.

형상변경에 따른 구조물 감쇠특성 및 소음 특성 예측기술 연구 (Study for the prediction of damping and sound radiation characteristics due to structural shape changes)

  • 유지우;서진관;이상우;박정원;박준홍
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.332-335
    • /
    • 2014
  • Applying damping sheets or dampers (dynamic or mass) can reduce noise from vibrating structure as well as vibration. However, this approach requires increases of weight and cost. If one can reduce structural noise by only modifying the structural shape, which would be the best practice. It is natural that the noise characteristics change when the structure is modified, but the recent experiment on the sunroof frame showed that the modification of the frame beads results in change of the structural damping, so that the corresponding noise can be reduced. In this context, the reason why the structural damping and the related noise upon an impact excitation is changed is theoretically investigated. The change of dynamic and damping characteristics of the strip panels when their shapes are modified is experimentally found and it is shown that such behaviours can be predicted by computer simulation. Some experimental specimen, mainly strip-type panels, are examined for the numerical verification, and especially damping ratios are investigated.

  • PDF