• Title/Summary/Keyword: structural damage detection

Search Result 567, Processing Time 0.027 seconds

A two-stage damage detection approach based on subset selection and genetic algorithms

  • Yun, Gun Jin;Ogorzalek, Kenneth A.;Dyke, Shirley J.;Song, Wei
    • Smart Structures and Systems
    • /
    • v.5 no.1
    • /
    • pp.1-21
    • /
    • 2009
  • A two-stage damage detection method is proposed and demonstrated for structural health monitoring. In the first stage, the subset selection method is applied for the identification of the multiple damage locations. In the second stage, the damage severities of the identified damaged elements are determined applying SSGA to solve the optimization problem. In this method, the sensitivities of residual force vectors with respect to damage parameters are employed for the subset selection process. This approach is particularly efficient in detecting multiple damage locations. The SEREP is applied as needed to expand the identified mode shapes while using a limited number of sensors. Uncertainties in the stiffness of the elements are also considered as a source of modeling errors to investigate their effects on the performance of the proposed method in detecting damage in real-life structures. Through a series of illustrative examples, the proposed two-stage damage detection method is demonstrated to be a reliable tool for identifying and quantifying multiple damage locations within diverse structural systems.

A review on recent development of vibration-based structural robust damage detection

  • Li, Y.Y.;Chen, Y.
    • Structural Engineering and Mechanics
    • /
    • v.45 no.2
    • /
    • pp.159-168
    • /
    • 2013
  • The effect of structural uncertainties or measurement errors on damage detection results makes the robustness become one of the most important features during identification. Due to the wide use of vibration signatures on damage detection, the development of vibration-based techniques has attracted a great interest. In this work, a review on vibration-based robust detection techniques is presented, in which the robustness is considerably improved through modeling error compensation, environmental variation reduction, denoising, or proper sensing system design. It is hoped that this study can give help on structural health monitoring or damage mitigation control.

Structural damage detection in continuum structures using successive zooming genetic algorithm

  • Kwon, Young-Doo;Kwon, Hyun-Wook;Kim, Whajung;Yeo, Sim-Dong
    • Structural Engineering and Mechanics
    • /
    • v.30 no.2
    • /
    • pp.135-146
    • /
    • 2008
  • This study utilizes the fine-tuning and small-digit characteristics of the successive zooming genetic algorithm (SZGA) to propose a method of structural damage detection in a continuum structure, where the differences in the natural frequencies of a structure obtained by experiment and FEM are compared and minimized using an assumed location and extent of structural damage. The final methodology applied to the structural damage detection is a kind of pseudo-discrete-variable-algorithm that counts the soundness variables as one (perfectly sound) if they are above a certain standard, such as 0.99. This methodology is based on the fact that most well-designed structures exhibit failures at some critical point due to manufacturing error, while the remaining region is free of damage. Thus, damage of 1% (depending on the given standard) or less can be neglected, and the search concentrated on finding more serious failures. It is shown that the proposed method can find out the exact structural damage of the monitored structure and reduce the time and amount of computation.

A Study for The Comparison of Structural Damage Detection Method Using Structural Dynamic Characteristic Parameters (구조 동특성 파라미터를 이용한 구조물 손상 탐색기법 비교 연구)

  • Choi, Byoung-Min;Woo, Ho-Kil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.3 s.120
    • /
    • pp.257-263
    • /
    • 2007
  • Detection of structural damage is an inverse problem in structural engineering. There are three main questions in the damage detection: existence, location and extent of the damage. In concept, the natural frequency and mode shapes of any structure must satisfy an eigenvalue problem. But, if a potential damage exists in a structure, an error resulting from the substitution of the refined analytical finite element model and measured modal data into the structural eigenvalue equation will occur, which is called the residual modal forces, and can be used as an indicator of potential damage in a structure. In this study, a useful damage detection method is proposed and compared with other two methods. Two degree-of-freedom system and Cantilever beam are used to demonstrate the approach. And the results of three introduced method are compared.

Damage Detection in Highway Bridges Via Changes in Modal Parameters (진동특성치의 변화를 통한 교량의 손상발견)

  • Kim, Jeong-Tae;Ryu, Yeon-Sun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.87-94
    • /
    • 1995
  • In highway bridges robust damage detection exercises are mandatory to secure the safety of the structures from hostile environmental conditions such as fatigue earthquake, wind, and corrosion. This paper presents a damage detection practice in a full-scale highway bridge by utilizing modal response parameters of as-built and damaged states of the structure. first the test structure is described and modal testing procedures are outlined. Next, a damage detection model which yields information on the location of damage directly from changes in mode shapes is outlined. Finally, the damage detection model is implemented to predict the location of damage in the ten structure. From the results, it was found that the damage detection model accurately locates damage in the test structures for which modal parameters of only a single mode are available for pre-damage (as-built) and post-damage stages.

  • PDF

Damage detection in jacket type offshore platforms using modal strain energy

  • Asgarian, B.;Amiri, M.;Ghafooripour, A.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.3
    • /
    • pp.325-337
    • /
    • 2009
  • Structural damage detection, damage localization and severity estimation of jacket platforms, based on calculating modal strain energy is presented in this paper. In the structure, damage often causes a loss of stiffness in some elements, so modal parameters; mode shapes and natural frequencies, in the damaged structure are different from the undamaged state. Geometrical location of damage is detected by computing modal strain energy change ratio (MSECR) for each structural element, which elements with higher MSECR are suspected to be damaged. For each suspected damaged element, by computing cross-modal strain energy (CMSE), damage severity as the stiffness reduction factor -that represented the ratios between the element stiffness changes to the undamaged element stiffness- is estimated. Numerical studies are demonstrated for a three dimensional, single bay, four stories frame of the existing jacket platform, based on the synthetic data that generated from finite element model. It is observed that this method can be used for damage detection of this kind of structures.

An efficient method for structural damage localization based on the concepts of flexibility matrix and strain energy of a structure

  • Nobahari, Mehdi;Seyedpoor, Seyed Mohammad
    • Structural Engineering and Mechanics
    • /
    • v.46 no.2
    • /
    • pp.231-244
    • /
    • 2013
  • An efficient method is proposed here to identify multiple damage cases in structural systems using the concepts of flexibility matrix and strain energy of a structure. The flexibility matrix of the structure is accurately estimated from the first few mode shapes and natural frequencies. Then, the change of strain energy of a structural element, due to damage, evaluated by the columnar coefficients of the flexibility matrix is used to construct a damage indicator. This new indicator is named here as flexibility strain energy based index (FSEBI). In order to assess the performance of the proposed method for structural damage detection, two benchmark structures having a number of damage scenarios are considered. Numerical results demonstrate that the method can accurately locate the structural damage induced. It is also revealed that the magnitudes of the FSEBI depend on the damage severity.

A model experiment of damage detection for offshore jacket platforms based on partial measurement

  • Shi, Xiang;Li, Hua-Jun;Yang, Yong-Chun;Gong, Chen
    • Structural Engineering and Mechanics
    • /
    • v.29 no.3
    • /
    • pp.311-325
    • /
    • 2008
  • Noting that damage occurrence of offshore jacket platforms is concentrated in two structural regions that are in the vicinity of still water surface and close to the seabed, a damage detection method by using only partial measurement of vibration in a suspect region was presented in this paper, which can not only locate damaged members but also evaluate damage severities. Then employing an experiment platform model under white-noise ground excitation by shaking table and using modal parameters of the first three modes identified by a scalar-type ARMA method on undamaged and damaged structures, the feasibility of the damage detection method was discussed. Modal parameters from eigenvalue analysis on the structural FEM model were also used to help the discussions. It is demonstrated that the damage detection algorithm is feasible on damage location and severity evaluation for broken slanted braces and it is robust against the errors of baseline FEM model to real structure when the principal errors is formed by difference of modal frequencies. It is also found that Z-value changes of modal shapes also play a role in the precise detection of damage.

A two-stage and two-step algorithm for the identification of structural damage and unknown excitations: numerical and experimental studies

  • Lei, Ying;Chen, Feng;Zhou, Huan
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.57-80
    • /
    • 2015
  • Extended Kalman Filter (EKF) has been widely used for structural identification and damage detection. However, conventional EKF approaches require that external excitations are measured. Also, in the conventional EKF, unknown structural parameters are included as an augmented vector in forming the extended state vector. Hence the sizes of extended state vector and state equation are quite large, which suffers from not only large computational effort but also convergence problem for the identification of a large number of unknown parameters. Moreover, such approaches are not suitable for intelligent structural damage detection due to the limited computational power and storage capacities of smart sensors. In this paper, a two-stage and two-step algorithm is proposed for the identification of structural damage as well as unknown external excitations. In stage-one, structural state vector and unknown structural parameters are recursively estimated in a two-step Kalman estimator approach. Then, the unknown external excitations are estimated sequentially by least-squares estimation in stage-two. Therefore, the number of unknown variables to be estimated in each step is reduced and the identification of structural system and unknown excitation are conducted sequentially, which simplify the identification problem and reduces computational efforts significantly. Both numerical simulation examples and lab experimental tests are used to validate the proposed algorithm for the identification of structural damage as well as unknown excitations for structural health monitoring.

ANN-based Real-Time Damage Detection Algorithm using Output-only Acceleration Signals (가속도를 이용한 인공신경망 기반 실시간 손상검색기법)

  • Kim, Jung-Tae;Park, Jae-Hyung;Do, Han-Sung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.43-48
    • /
    • 2007
  • In this study, an ANN-based damage detection algorithm using acceleration signals is developed for alarming locations of damage in beam-type structures. A new ANN-algorithm using output-only acceleration responses is designed for damage detection in real time. The cross-covariance of two acceleration signals measured at two different locations is selected as the feature representing the structural condition. Neural networks are trained for potential loading patterns and damage scenarios of the target structure for which its actual loadings are unknown. The feasibility and practicality of the proposed method are evaluated from laboratory-model tests on free-free beams for which accelerations were measured before and after several damage cases.

  • PDF