• Title/Summary/Keyword: structural coupling

Search Result 723, Processing Time 0.024 seconds

An Analytical Study on the Thermal-Structure Stability Evaluation of Mill-Turn Spindle with Curvic Coupling (커빅 커플링을 적용한 밀-턴 스핀들의 열-구조 안정성 평가에 관한 해석적 연구)

  • Lee, Choon-Man;Jeong, Ho-In
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.1
    • /
    • pp.100-107
    • /
    • 2020
  • As demand for high value-added products with hard materials increases, the line center is used for producing high value-added products in many industries such as aerospace, automobile fields. The line center is a key device for smart factory automation that can improve the production efficiency and the productivity. Therefore, the development of a mill-turn line center is necessary to produce high value-added products with complex shapes flexibly. In the mill-turn process, a milling process and a turning process are combined. In particular, the turning process needs to increase the rigidity of the spindle. The purpose of this study is to analyze the thermal-structural stability through thermo-structural coupled analysis for a mill-turn spindle with a curvic coupling. The maximum temperature and thermal stability of the spindle were analyzed by thermal distribution. In addition, the thermal deformation and thermal-structural stability of the spindle were analyzed through thermo-structural coupled analysis.

Spin Exchange Coupling in Dimethoxo-Bridged Dichromium(III) Complexes: A Density Functional Theory Study

  • Kang, Dae-Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.5
    • /
    • pp.963-968
    • /
    • 2008
  • For the [$Cr_2(H_2tmp)_2Cl_4$] compound, simplified models with two bridging methoxo ligands have been studied. The influence of the bridging Cr-O-Cr bond angles on the exchange coupling between metal atoms in the model compound has been analyzed by means of density functional calculations with the broken-symmetry approach. Coupling constant calculated for the full structure is in good agreement with the experimentally reported value, confirming the validity of the computational strategy used in this work to predict the exchange coupling in a family of related dinuclear Cr(III) compounds. The calculations indicate a good correlation between the calculated coupling constant and the sum of the squared energy gap of three pairs of metal $t_{2g}$ OMSOs with a limited variation of the Cr-O-Cr angle. The spin density distribution and the mechanism of magnetic coupling interactions are discussed.

Free vibration of primary-secondary structures with multiple connections (다중 지지된 주-부 구조물의 자유진동)

  • 민경원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.10a
    • /
    • pp.63-68
    • /
    • 1991
  • The frequency window method has been extended to include strong coupling and multiple connections between the primary structure and the secondary structures. The rational polynomial expansion of the eigenvalue problem and the analytical methods for its solution are novel and distinguish this work from other eigenvalue analysis methods. The key results are the identification of parameters which quantify the resonance and coupling characteristics; the derivation of analytical dosed-form expressions describing the fundamental modal properties of the frequency windows; and the development of an iterative procedure which yields accurate convergent results for strongly-coupled primary-secondary structures.

  • PDF

Nonlinear behavior of deep reinforced concrete coupling beams

  • Zhao, Z.Z.;Kwan, A.K.H.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.2
    • /
    • pp.181-198
    • /
    • 2003
  • Six large scale models of conventionally reinforced concrete coupling beams with span/depth ratios ranging from 1.17 to 2.00 were tested under monotonically applied shear loads to study their nonlinear behavior using a newly developed test method that maintained equal rotations at the two ends of the coupling beam specimen and allowed for local deformations at the beam-wall joints. By conducting the tests under displacement control, the post-peak behavior and complete load-deflection curves of the coupling beams were obtained for investigation. It was found that after the appearance of flexural and shear cracks, a deep coupling beam would gradually transform itself from an ordinary beam to a truss composed of diagonal concrete struts and longitudinal and transverse steel reinforcement bars. Moreover, in a deep coupling beam, the local deformations at the beam-wall joints could contribute significantly (up to the order of 50%) to the total deflection of the coupling beam, especially at the post-peak stage. Finally, although a coupling beam failing in shear would have a relatively low ductility ratio of only 5 or even lower, a coupling beam failing in flexure could have a relatively high ductility ratio of 10 or higher.

Application of model reduction technique and structural subsection technique on optimal sensor placement of truss structures

  • Lu, Lingling;Wang, Xi;Liao, Lijuan;Wei, Yanpeng;Huang, Chenguang;Liu, Yanchi
    • Smart Structures and Systems
    • /
    • v.15 no.2
    • /
    • pp.355-373
    • /
    • 2015
  • An optimal sensor placement (OSP) method based on structural subsection technique (SST) and model reduction technique was proposed for modal identification of truss structures, which was conducted using genetic algorithm (GA). The constraints of GA variables were determined by SST in advance. Subsequently, according to model reduction technique, the optimal group of master degrees of freedom and the optimal objective function value were obtained using GA in a case of the given number of sensors. Correspondingly, the optimal number of sensors was determined according to optimal objective function values in cases of the different number of sensors. The proposed method was applied on a scaled jacket offshore platform to get its optimal number of sensors and the corresponding optimal sensor layout. Then modal kinetic energy and modal assurance criterion were adopted to evaluate vibration energy and mode independence property. The experiment was also conducted to verify the effectiveness of the selected optimal sensor layout. The results showed that experimental modes agreed reasonably well with numerical results. Moreover the influence of the proposed method using different optimal algorithms and model reduction technique on optimal results was also compared. The results showed that the influence was very little.

Integrating OpenSees with other software - with application to coupling problems in civil engineering

  • Gu, Quan;Ozcelik, Ozgur
    • Structural Engineering and Mechanics
    • /
    • v.40 no.1
    • /
    • pp.85-103
    • /
    • 2011
  • Integration of finite element analysis (FEA) software into various software platforms is commonly used in coupling systems such as systems involving structural control, fluid-structure, wind-structure, soil-structure interactions and substructure method in which FEA is used for simulating the structural responses. Integrating an FEA program into various other software platforms in an efficient and simple way is crucial for the development and performance of the entire coupling system. The lack of simplicity of the existing integration methods makes this integration difficult and therefore entails the motivation of this study. In this paper, a novel practical technique, namely CS technique, is presented for integrating a general FEA software framework OpenSees into other software platforms, e.g., Matlab-$Simulink^{(R)}$ and a soil-structure interaction (SSI) system. The advantage of this integration technique is that it is efficient and relatively easy to implement. Instead of OpenSees, a cheap client handling TCL is integrated into the other software. The integration is achieved by extending the concept of internet based client-server concept, taking advantage of the parameterization framework of OpenSees, and using a command-driven scripting language called tool command language (TCL) on which the OpenSees' interface is based. There is no need for any programming inside OpenSees. The presented CS technique proves as an excellent solution for the coupling problems mentioned above (for both linear and nonlinear problems). Application examples are provided to validate the integration method and illustrate the various uses of the method in the civil engineering.

A Study on the Cross Sectional Properties Considering Bending-Shear Coupling Effect of Composite Rotor Blade (굽힘-전단 연성을 고려한 단면특성값이 복합재료 회전익에 미치는 영향에 관한 연구)

  • 오택열
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.4
    • /
    • pp.89-95
    • /
    • 1998
  • This paper focuses on the effect of structural coupling in the behavior of composite rotor blade. We have searched for bending, extension and shear coupling term with the ply angle of rotor blade and the dynamic behavior of rotor blade for each coupling term. It was found that natural frequency increases as the rotating speed of rotor blade increases. In the couplings with feathering, bending coupling is main parameter, because bending coupling term is larger than shear . Also, the couplings with feathering is less effective in 0$^{\circ}$, 90$^{\circ}$, of ply angle and more variable at blade tip.

Flip-Flap Valve-Type Breakaway Coupling through Reverse Engineering (역설계를 통한 Flip-Flap 밸브형 분리식 커플링에 관한 연구)

  • Ahn, Hee-Hak;Yi, Chung-Seob
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.16-22
    • /
    • 2016
  • This study is a structural analysis of 3" Cryogenic Safety Breakaway Coupling using a manufactured product from KLAW Company. Breakaway coupling is very important in the pipe system, especially when transporting fuel or gas in the pipeline. For the analysis of the patent infringement target, Dover and KLAW Company's technologies (US 08127785, EP 0764809) were analyzed. Finally, the flip-flap valve overlap was measured after combining the breakaway coupling through 3D modeling, and the valve overlap had a 0.7mm measurement value from the height gauge. The safety breakaway coupling consisted of a total of 62 pieces (body: 42, valve module: 21).

FEM-BEM iterative coupling procedures to analyze interacting wave propagation models: fluid-fluid, solid-solid and fluid-solid analyses

  • Soares, Delfim Jr.
    • Coupled systems mechanics
    • /
    • v.1 no.1
    • /
    • pp.19-37
    • /
    • 2012
  • In this work, the iterative coupling of finite element and boundary element methods for the investigation of coupled fluid-fluid, solid-solid and fluid-solid wave propagation models is reviewed. In order to perform the coupling of the two numerical methods, a successive renewal of the variables on the common interface between the two sub-domains is performed through an iterative procedure until convergence is achieved. In the case of local nonlinearities within the finite element sub-domain, it is straightforward to perform the iterative coupling together with the iterations needed to solve the nonlinear system. In particular, a more efficient and stable performance of the coupling procedure is achieved by a special formulation that allows to use different time steps in each sub-domain. Optimized relaxation parameters are also considered in the analyses, in order to speed up and/or to ensure the convergence of the iterative process.

Theoretical and practical features of J-scaled distortion-free HSQC

  • Cha, Jin Wook;Park, Sunghyouk
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.25 no.1
    • /
    • pp.1-7
    • /
    • 2021
  • Employing of 13C stable-isotopes in NMR metabolomics can give unique splitting patterns and coupling constants information originated from 13C-13C coupling interaction that provide an important structural information regarding the cellular metabolic process. But it has been known that an undesirable signal distortion in 2D heteronuclear correlation study, due to 13C-13C interaction, hampers an analysis of the coupling information. Recently, we proposed J-scaled distortion-free heteronuclear single-quantum coherence (HSQC) sequence which provides a distortion-free 13C-13C coupling information with a selective resolution enhancement of JCC splitting. In this paper, we dicuss theoretical aspect and practical feature of J-scaled HSQC pulse sequence. The conceptual explanation of orgin of the signal distortion by 13C-13C coupling interaction and design of J-scaled HSQC through exemplified results are provided in brief.