• Title/Summary/Keyword: structural coupling

Search Result 725, Processing Time 0.031 seconds

The Steel Coupling Beam-Wall Connections Strength

  • Park, Wan-Shin;Yun, Hyun-Do
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.135-145
    • /
    • 2006
  • In high multistory reinforced concrete buildings, coupled shear walls can provide an efficient structural system to resist horizontal force due to wind and seismic effects. Coupled shear walls are usually built over the whole height of the building and re laid out either as a series of walls coupled by beams and/or slabs or a central core structure with openings to accommodate doors, elevators walls, windows and corridors. A number of recent studies have focused on examining the seismic response of concrete, steel, and composite coupling beams. However, since no specific equations are available for computing the bearing strength of steel coupling beam-wall connections, it is necessary to develop such strength equations. There were carried out analytical and experimental studies to develop the strength equations of steel coupling beam-connections. Experiments were conducted to determine the factors influencing the bearing strength of the steel coupling beam-wall connection. The results of the proposed equations were in good agreement with both test results and other test data from the literature. Finally, this paper provides background for design guidelines that include a design model to calculate the bearing strength of steel coupling beam-wall connections.

Elastodynamic analysis by a frequency-domain FEM-BEM iterative coupling procedure

  • Soares, Delfim Jr.;Goncalves, Kleber A.;de Faria Telles, Jose Claudio
    • Coupled systems mechanics
    • /
    • v.4 no.3
    • /
    • pp.263-277
    • /
    • 2015
  • This paper presents a coupled FEM-BEM strategy for the numerical analysis of elastodynamic problems where infinite-domain models and complex heterogeneous media are involved, rendering a configuration in which neither the Finite Element Method (FEM) nor the Boundary Element Method (BEM) is most appropriate for the numerical analysis. In this case, the coupling of these methodologies is recommended, allowing exploring their respective advantages. Here, frequency domain analyses are focused and an iterative FEM-BEM coupling technique is considered. In this iterative coupling, each sub-domain of the model is solved separately, and the variables at the common interfaces are iteratively updated, until convergence is achieved. A relaxation parameter is introduced into the coupling algorithm and an expression for its optimal value is deduced. The iterative FEM-BEM coupling technique allows independent discretizations to be efficiently employed for both finite and boundary element methods, without any requirement of matching nodes at the common interfaces. In addition, it leads to smaller and better-conditioned systems of equations (different solvers, suitable for each sub-domain, may be employed), which do not need to be treated (inverted, triangularized etc.) at each iterative step, providing an accurate and efficient methodology.

A Study on the Effect of Steel Fiber in Reinforced Concrete Coupling Beam Subjected to Cyclic Loading (반복하중을 받는 철근콘크리트 연결보에서 강섬유의 보강효과에 관한 연구)

  • Kim, Jin-Sung;Bae, Baek-Il;Choi, Chang-Sik
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.10
    • /
    • pp.181-190
    • /
    • 2019
  • In this study, four reinforced concrete coupling beams were subjected to cyclic lateral loading test to evaluate the structural performance of coupling beam according to volume fraction of steel fiber. For this purpose, the volume fraction of steel fiber(0%, 1%, 2%) and transverse reinforcement spacing were determined as the main parameter. According to the test results, the maximum strength of D-40C-s100-0 was 1.15, 1.13, 1.05 times higher than D-40C-s300-0, D-40C-s300-1, D-40C-s300-2, respectively. The maximum strength of coupling beams with mitigated rebar details increases as the volume fraction of steel fiber increases. Although steel fiber 2% reinforced specimen(D-40C-s300-2) did not satisfy the amount of transverse reinforcement required for seismic design of coupling beam, the overall performance including to maximum strength, ductility and energy dissipation capacity was similar to the control specimen(D-40C-s100-0). As a result, the use of steel fiber with 2% reinforcement can partially replace the transverse reinforcement in diagonally reinforced concrete coupling beam.

The Behavior of Reinforced Concrete Coupling Elements in Wall-Dominant System (벽식 아파트 구조에서 연결부재의 거동특성)

  • 장극관;서대원;천영수
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.1
    • /
    • pp.83-91
    • /
    • 2002
  • A common form of construction for apartment buildings consists of walls and coupling elements. But, the structural behavior of coupling elements are very complex and affected by the properties of coupling elements. The objective of this study is to estimate the behavior of coupling elements in wall-dominant systems. For the purpose of this study, two wall-slab specimens and two wall-beam specimens were tested. The specimens with different reinforcement layouts were subjected to reversed cyclic loading, consistent with coupling action, with increasing imposed inelastic deformations. From the results of this study, 1) in coupling slabs, the stresses were not uniform across the width, 2) the effective width of coupling slabs was found smaller than that of predicted from previous studies, 3) diagonally reinforced coupling beam with slab showed larger ductility and more amount of energy dissipation to be attained compared with conventionally reinforced coupling beam.

Closed-form and numerical solution of the static and dynamic analysis of coupled shear walls by the continuous method and the modified transfer matrix method

  • Mao C. Pinto
    • Structural Engineering and Mechanics
    • /
    • v.86 no.1
    • /
    • pp.49-68
    • /
    • 2023
  • This study investigates the static and dynamic structural analysis of symmetrical and asymmetrical coupled shear walls using the continuous and modified transfer matrix methods by idealizing the coupled shear wall as a three-field CTB-type replacement beam. The coupled shear wall is modeled as a continuous structure consisting of the parallel coupling of a Timoshenko beam in tension (with axial extensibility in the shear walls) and a shear beam (replacing the beam coupling effect between the shear walls). The variational method using the Hamilton principle is used to obtain the coupled differential equations and the boundary conditions associated with the model. Using the continuous method, closed-form analytical solutions to the differential equation for the coupled shear wall with uniform properties along the height are derived and a numerical solution using the modified transfer matrix is proposed to overcome the difficulty of coupled shear walls with non-uniform properties along height. The computational advantage of the modified transfer matrix method compared to the classical method is shown. The results of the numerical examples and the parametric analysis show that the proposed analytical and numerical model and method is accurate, reliable and involves reduced processing time for generalized static and dynamic structural analysis of coupled shear walls at a preliminary stage and can used as a verification method in the final stage of the project.

Partitioned analysis of nonlinear soil-structure interaction using iterative coupling

  • Jahromi, H. Zolghadr;Izzuddin, B.A.;Zdravkovic, L.
    • Interaction and multiscale mechanics
    • /
    • v.1 no.1
    • /
    • pp.33-51
    • /
    • 2008
  • This paper investigates the modelling of coupled soil-structure interaction problems by domain decomposition techniques. It is assumed that the soil-structure system is physically partitioned into soil and structure subdomains, which are independently modelled. Coupling of the separately modelled partitioned subdomains is undertaken with various algorithms based on the sequential iterative Dirichlet-Neumann sub-structuring method, which ensures compatibility and equilibrium at the interface boundaries of the subdomains. A number of mathematical and computational characteristics of the coupling algorithms, including the convergence conditions and choice of algorithmic parameters leading to enhanced convergence of the iterative method, are discussed. Based on the presented coupling algorithms a simulation environment, utilizing discipline-oriented solvers for nonlinear structural and geotechnical analysis, is developed which is used here to demonstrate the performance characteristics and benefits of various algorithms. Finally, the developed tool is used in a case study involving nonlinear soil-structure interaction analysis between a plane frame and soil subjected to ground excavation. This study highlights the relative performance of the various considered coupling algorithms in modelling real soil-structure interaction problems, in which nonlinearity arises in both the structure and the soil, and leads to important conclusions regarding their adequacy for such problems as well as the prospects for further enhancements.

Calibration of Parameters for Predicting Hysteretic Behavior of Diagonally Reinforced Concrete Coupling Beams (반복하중을 받는 대각보강 콘크리트 연결보의 이력거동 예측을 위한 매개변수 결정방법)

  • Koh, Hyeyoung;Han, Sang Whan;Heo, Chang Dae;Lee, Chang Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.6
    • /
    • pp.303-310
    • /
    • 2017
  • The coupled shear wall system with coupling beams is an efficient structural system for high-rise buildings because it can provide excellent ductility and energy dissipation to the buildings. The objective of this study is to simulate the hysteretic behavior of diagonally reinforced concrete coupling beams including pinching and cyclic deteriorations in strength and stiffness using a numerical model. For this purpose, coupling beams are modeled with an elastic beam element and plastic spring element placed at the beam ends. Parameters for the analytical model was calibrated based on the test results of 6 specimens for diagonally reinforced concrete coupling beams. The analytical model with calibrated model parameters is verified by comparing the hysteretic curves obtained from analysis and experimental tests.

A Study on the Relationship between the Cutting Force and the Critical Ejecting Distance of Disk for a Mill Turret (복합공구대 디스크임계돌출거리와 절삭력과의 관계에 관한 연구)

  • Choi, Ji-Hwan;Kim, Chae-Sil;Cho, Su-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.1
    • /
    • pp.110-116
    • /
    • 2013
  • Curvic coupling of mill turret should maintain disk weight and the cutting resistance which occurs the machining operation and must also have power transmission function. In order to improve machining operation range, the ejecting distance from curvic coupling to the disk must increase as much as possible. But moment is increased by the lack of capacity of the curvic coupling. Increase of moment is the cause of vibration/noise and degradation of machining performance not only stability problem. The manufacturer of mill turret has no the design information between the ejecting distance and the cutting resistance with safety of curvic coupling. Therefore this study describes a finite element analysis model of mill turret using ANSYS workbench. The structural analyses and modal analyses with varying of the ejecting distances and cutting resistances are performed. Finally the equation for relationship between the critical ejecting distance and the cutting resistance is defined under 5 of the safety factor for the maximum von-Mises stress at the curvic coupling.

Behavior of strengthened reinforced concrete coupling beams by bolted steel plates, Part 2: Evaluation of theoretical strength

  • Zhu, Y.;Su, R.K.L.
    • Structural Engineering and Mechanics
    • /
    • v.34 no.5
    • /
    • pp.563-580
    • /
    • 2010
  • Composite beams using bolts to attach steel plates to the side faces of existing reinforced concrete (RC) coupling beams can enhance both their strength and deformability. The behavior of those composite beams differs substantially from the behavior of typical composite beams made up of steel beams and concrete slabs. The former are subjected to longitudinal, vertical and rotational slips, while the latter only involve longitudinal slip. In this study, a mixed analysis method was adopted to develop the fundamental equations for accurate prediction of the load-carrying capacity of steel plate strengthened RC coupling beams. Then, a rigid plastic analysis technique was used to cope with the full composite effect of the bolt group connections. Two theoretical models for the determination of the strength of medium-length plate strengthened coupling beams based on mixed analysis and rigid plastic methods are presented. The strength of the strengthened coupling beams is derived. The vertical and longitudinal slips of the steel plates and the shear strength of the anchor-bolt connection group is considered. The theoretical models are validated by the available experimental results presented in a companion paper. The strength of the specimens predicted from the mixed analysis model is found to be in good agreement with that from the experimental results.

Development of High-speed Shaft Coupling for 6 MW Class Offshore Wind Turbine (6 MW급 해상풍력발전기용 고속축커플링 개발)

  • Park, Soo-Keun;Lee, Hyoung-Woo
    • Journal of Wind Energy
    • /
    • v.10 no.4
    • /
    • pp.20-27
    • /
    • 2019
  • High-speed shaft coupling in a wind power system transmits power and absorbs variations in length and spindle dislocation between the gearbox and generator. Furthermore, the coupling has an insulation function that prevents electrical corrosion caused by the flow of the generator's current into the gearbox and prevents overload resulting from sudden power failure from being transferred to the gearbox. Its design, functions, and part verification are described in the IEC61400 and GL Guidelines, which specify that the part must have a durability life of 20 years or longer under distance variation and axial misalignment between the gearbox and the generator. This study presents the design of a high-speed coupling through composite stiffness calculation, structural analysis, and comparative analysis of test and theory to identify the characteristics of high-speed coupling for a large-capacity 6 MW wind power generator. A prototype was fabricated by optimizing the manufacturing process for each part based on the design, and the reliability of the fabricated prototype was verified by evaluating the performance of the target quantitative evaluation items.