• Title/Summary/Keyword: structural change

Search Result 3,382, Processing Time 0.034 seconds

Structural Change in the Price-Dividend Ratio and Implications on Stock Return Prediction Regression

  • Lee, Ho-Jin
    • The Korean Journal of Financial Management
    • /
    • v.24 no.2
    • /
    • pp.183-206
    • /
    • 2007
  • The price-dividend ratio is one of the most frequently used financial variables to predict long-horizon stock return. However, the persistency of the price-dividend ratio is found to cause the spuriousness of the stock return prediction regression. The stable relationship between the stock price and the dividend, however, seems to weaken after World War II and to experience structural break. In this paper, we identify a structural change in the cointegrating relationship between the log of the stock price and the log of the dividend. Confirming a structural break in 1962, we subdivide the sample and apply the fully modified estimator to correct for the nonstationarity of the regressor. With the subdivided sample, we exercise the nonparametric bootstrap procedure to derive the empirical distribution of the test statistics and fail to find return predictability in each subsample period.

  • PDF

Structural Disordering and Relaxation Process in an Amorphous Alloy (비정질 합금의 구조완화 및 구조무질서화)

  • Kim, Hyun-Su;Yoon, Kyeu-Sang;Lee, Jae-Chul
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.11
    • /
    • pp.823-830
    • /
    • 2011
  • Structural change in an amorphous alloy was measured by applying a load below the global yield stregth at ambient temperatures. It was observed that the magnitude of the apparent structural change occuring in the amorphous alloy is determined by the compatative relationship between the stress-induced disordering process and the thermally-activated relaxation process. Structural disorder was observed to take place even at a stress well below the global yield, and the degree of the disorder was increased abruptly at the earlier stage of loading and saturated with time. In the mean time, unlike the previous belief, the relaxation process was observed to occur even at embient temperatures, and the degree of the relaxation was observed to increase linearly with time. The analytical equation predicting the structural change was proposed.

Influence of openings of infill wall on seismic vulnerability of existing RC structures

  • Dilmac, Hakan
    • Structural Engineering and Mechanics
    • /
    • v.75 no.2
    • /
    • pp.211-227
    • /
    • 2020
  • The contribution of infill wall is generally not considered in the structural analysis of reinforced concrete (RC) structures due to the lack of knowledge of the complex behavior of the infilled frame of RC structures. However, one of the significant factors affecting structural behavior and earthquake performance of RC structures is the infill wall. Considering structural and architectural features of RC structures, any infill wall may have openings with different amounts and aspect ratios. In the present study, the influence of infill walls with different opening rates on the structural behaviors and earthquake performance of existing RC structures were evaluated. Therefore, the change in the opening ratio in the infill wall has been investigated for monitoring the change in structural behavior and performance of the RC structures. The earthquake performance levels of existing RC structures with different structural properties were determined by detecting the damage levels of load-carrying components. The results of the analyzes indicate that the infill wall can completely change the distribution of column and beam damage level. It was observed that the openings in the walls had serious impact on the parameters affecting the behavior and earthquake performance of the RC structures. The infill walls have a beneficial effect on the earthquake performance of RC structures, provided they are placed regularly and there are appropriate openings rate throughout the RC structures and they do not cause structural irregularities.

Damage detection of shear buildings using frequency-change-ratio and model updating algorithm

  • Liang, Yabin;Feng, Qian;Li, Heng;Jiang, Jian
    • Smart Structures and Systems
    • /
    • v.23 no.2
    • /
    • pp.107-122
    • /
    • 2019
  • As one of the most important parameters in structural health monitoring, structural frequency has many advantages, such as convenient to be measured, high precision, and insensitive to noise. In addition, frequency-change-ratio based method had been validated to have the ability to identify the damage occurrence and location. However, building a precise enough finite elemental model (FEM) for the test structure is still a huge challenge for this frequency-change-ratio based damage detection technique. In order to overcome this disadvantage and extend the application for frequencies in structural health monitoring area, a novel method was developed in this paper by combining the cross-model cross-mode (CMCM) model updating algorithm with the frequency-change-ratio based method. At first, assuming the physical parameters, including the element mass and stiffness, of the test structure had been known with a certain value, then an initial to-be-updated model with these assumed parameters was constructed according to the typical mass and stiffness distribution characteristic of shear buildings. After that, this to-be-updated model was updated using CMCM algorithm by combining with the measured frequencies of the actual structure when no damage was introduced. Thus, this updated model was regarded as a representation of the FEM model of actual structure, because their modal information were almost the same. Finally, based on this updated model, the frequency-change-ratio based method can be further proceed to realize the damage detection and localization. In order to verify the effectiveness of the developed method, a four-level shear building was numerically simulated and two actual shear structures, including a three-level shear model and an eight-story frame, were experimentally test in laboratory, and all the test results demonstrate that the developed method can identify the structural damage occurrence and location effectively, even only very limited modal frequencies of the test structure were provided.

Change points detection for nonstationary multivariate time series

  • Yeonjoo Park;Hyeongjun Im;Yaeji Lim
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.4
    • /
    • pp.369-388
    • /
    • 2023
  • In this paper, we develop the two-step procedure that detects and estimates the position of structural changes for multivariate nonstationary time series, either on mean parameters or second-order structures. We first investigate the presence of mean structural change by monitoring data through the aggregated cumulative sum (CUSUM) type statistic, a sequential procedure identifying the likely position of the change point on its trend. If no mean change point is detected, the proposed method proceeds to scan the second-order structural change by modeling the multivariate nonstationary time series with a multivariate locally stationary Wavelet process, allowing the time-localized auto-correlation and cross-dependence. Under this framework, the estimated dynamic spectral matrices derived from the local wavelet periodogram capture the time-evolving scale-specific auto- and cross-dependence features of data. We then monitor the change point from the lower-dimensional approximated space of the spectral matrices over time by applying the dynamic principal component analysis. Different from existing methods requiring prior information on the type of changes between mean and covariance structures as an input for the implementation, the proposed algorithm provides the output indicating the type of change and the estimated location of its occurrence. The performance of the proposed method is demonstrated in simulations and the analysis of two real finance datasets.

Structural change and asymmetry analysis of petroleum product prices in Korea

  • Oh, Sun-Ah;Heo, Eun-Nyeong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.669-675
    • /
    • 2003
  • This paper examines structural breaks and asymmetries of prices of four domestic petroleum products, i.e., gasoline, kerosene, diesel, and bunker-C, following the changes in the pricing policies pertaining to petroleum products in Korea from the government-controlled pricing system to the market pricing system. We use the monthly wholesale market price data for the sample period between July 1988 and December 2001. Using the four methods: the Chow test, the CUSUM/CUSUMQ tests, the Bayesian approach and the Dufour test, the structural behaviors of the petroleum product prices are examined. We found that structural change occurred in all petroleum products, with the exception of Kerosene, at the point of pricing policy change from government-controlled to the spot-price related pricing system. We, also conducted asymmetric analysis using the Borenstein, Cameron, and Gilbert (1997)'s model and found evidences of price asymmetry for all four product types, but in different pattern for each product.

  • PDF

Productivity growth in Korean Railway Transport (우리나라 철도수송의 생산성 변화)

  • Kim, Hyun-Woong;Kook, Kwang-Ho;Moon, Dae-Seop
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.378-381
    • /
    • 2009
  • This paper investigates the productivity growth in Korean railway transport. The productivity growth is calculated by a process of measuring of pure efficiency change index(PECI), scale efficiency change index(SECI), and technical change index(TCI), using Data envelopment analysis (DEA) method. The data cover the period 1999$\sim$2006; 1999$\sim$2003 are the pre-structural reform years and the post-structural reform years are 2004$\sim$2006. The framework for the analysis is Malmquist Productivity Index (MPI) of the to investigate the impacts of structural reform on productivity growth, respectively. The inputs considered are the length of operating line, the number of staff, the number of coach and wagon, and the outputs are the trains movement of passenger and freight, and the traffic of passenger and freight. Results indicate that Korean railway experienced a annual productivity growth of approx. 3% after the structural reform.

  • PDF

A new damage index for detecting sudden change of structural stiffness

  • Chen, B.;Xu, Y.L.
    • Structural Engineering and Mechanics
    • /
    • v.26 no.3
    • /
    • pp.315-341
    • /
    • 2007
  • A sudden change of stiffness in a structure, associated with the events such as weld fracture and brace breakage, will cause a discontinuity in acceleration response time histories recorded in the vicinity of damage location at damage time instant. A new damage index is proposed and implemented in this paper to detect the damage time instant, location, and severity of a structure due to a sudden change of structural stiffness. The proposed damage index is suitable for online structural health monitoring applications. It can also be used in conjunction with the empirical mode decomposition (EMD) for damage detection without using the intermittency check. Numerical simulation using a five-story shear building under different types of excitation is executed to assess the effectiveness and reliability of the proposed damage index and damage detection approach for the building at different damage levels. The sensitivity of the damage index to the intensity and frequency range of measurement noise is also examined. The results from this study demonstrate that the damage index and damage detection approach proposed can accurately identify the damage time instant and location in the building due to a sudden loss of stiffness if measurement noise is below a certain level. The relation between the damage severity and the proposed damage index is linear. The wavelet-transform (WT) and the EMD with intermittency check are also applied to the same building for the comparison of detection efficiency between the proposed approach, the WT and the EMD.

Temperature-dependent Structural and Magnetic Properties of Diamagnetic $HgI_2$

  • Park, C.I.;Jin, Zhenlan;Hwang, I.H.;Yeo, S.M.;Han, S.W.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.291.1-291.1
    • /
    • 2013
  • We examined the temperature-dependent structural and magnetic properties of HgI2 in the temperature range of 300~400 K. HgI2 is a diamagnetic material and can be used for X-ray or γ-ray detectors. DCmagnetization measurements on HgI2 showed that there is a small but distinguishable change in its diamagnetic properties near 375 K. The magnetic property change is not expected because Hg and I are known as nonmagnetic elements. X-ray diffraction (XRD) measurements revealed a structural transition in the temperature of 350~400 K. Temperature-dependent x-ray absorption fine structure (XAFS) demonstrated that the chemical valence states of both Hg and I did not changed in the temperature range of 300~400 K. However, XAFS revealed that the bond-length disorder was slightly increased in the temperature range, particularly, near Hg atoms. The structural changes of HgI2 are likely related to its diamagnetic property change. We will discuss the relation between the diamagnetic properties and local structural properties of HgI2 in detail.

  • PDF

Non-stochastic interval arithmetic-based finite element analysis for structural uncertainty response estimate

  • Lee, Dongkyu;Park, Sungsoo;Shin, Soomi
    • Structural Engineering and Mechanics
    • /
    • v.29 no.5
    • /
    • pp.469-488
    • /
    • 2008
  • Finite element methods have often been used for structural analyses of various mechanical problems. When finite element analyses are utilized to resolve mechanical systems, numerical uncertainties in the initial data such as structural parameters and loading conditions may result in uncertainties in the structural responses. Therefore the initial data have to be as accurate as possible in order to obtain reliable structural analysis results. The typical finite element method may not properly represent discrete systems when using uncertain data, since all input data of material properties and applied loads are defined by nominal values. An interval finite element analysis, which uses the interval arithmetic as introduced by Moore (1966) is proposed as a non-stochastic method in this study and serves a new numerical tool for evaluating the uncertainties of the initial data in structural analyses. According to this method, the element stiffness matrix includes interval terms of the lower and upper bounds of the structural parameters, and interval change functions are devised. Numerical uncertainties in the initial data are described as a tolerance error and tree graphs of uncertain data are constructed by numerical uncertainty combinations of each parameter. The structural responses calculated by all uncertainty cases can be easily estimated so that structural safety can be included in the design. Numerical applications of truss and frame structures demonstrate the efficiency of the present method with respect to numerical analyses of structural uncertainties.