• Title/Summary/Keyword: structural SVMs

Search Result 14, Processing Time 0.028 seconds

A Prior Model of Structural SVMs for Domain Adaptation

  • Lee, Chang-Ki;Jang, Myung-Gil
    • ETRI Journal
    • /
    • v.33 no.5
    • /
    • pp.712-719
    • /
    • 2011
  • In this paper, we study the problem of domain adaptation for structural support vector machines (SVMs). We consider a number of domain adaptation approaches for structural SVMs and evaluate them on named entity recognition, part-of-speech tagging, and sentiment classification problems. Finally, we show that a prior model for structural SVMs outperforms other domain adaptation approaches in most cases. Moreover, the training time for this prior model is reduced compared to other domain adaptation methods with improvements in performance.

Modified Fixed-Threshold SMO for 1-Slack Structural SVMs

  • Lee, Chang-Ki;Jang, Myung-Gil
    • ETRI Journal
    • /
    • v.32 no.1
    • /
    • pp.120-128
    • /
    • 2010
  • In this paper, we describe a modified fixed-threshold sequential minimal optimization (FSMO) for 1-slack structural support vector machine (SVM) problems. Because the modified FSMO uses the fact that the formulation of 1-slack structural SVMs has no bias, it breaks down the quadratic programming (QP) problems of 1-slack structural SVMs into a series of smallest QP problems, each involving only one variable. For various test sets, the modified FSMO is as accurate as existing structural SVM implementations (n-slack and 1-slack SVM-struct) but is faster on large data sets.

Named Entity Recognition with Structural SVMs and Pegasos algorithm (Structural SVMs 및 Pegasos 알고리즘을 이용한 한국어 개체명 인식)

  • Lee, Chang-Ki;Jang, Myun-Gil
    • Korean Journal of Cognitive Science
    • /
    • v.21 no.4
    • /
    • pp.655-667
    • /
    • 2010
  • The named entity recognition task is one of the most important subtasks in Information Extraction. In this paper, we describe a Korean named entity recognition using structural Support Vector Machines (structural SVMs) and modified Pegasos algorithm. Using the proposed approach, we could achieve an 85.43% F1 and an 86.79% F1 for 15 named entity types on TV domain and sports domain, respectively. Moreover, we reduced the training time to 4% without loss of performance compared to Conditional Random Fields (CRFs).

  • PDF

Named Entity Recognition with Structural SVMs and Pegasos algorithm (Structural SVMs 및 Pegasos 알고리즘을 이용한 한국어 개체명 인식)

  • Lee, Changki;Jang, Myungil
    • Annual Conference on Human and Language Technology
    • /
    • 2010.10a
    • /
    • pp.100-104
    • /
    • 2010
  • 개체명 인식은 정보 추출의 한 단계로서 정보검색 분야 뿐 아니라 질의응답과 요약 분야에서 매우 유용하게 사용되고 있다. 본 논문에서는 structural Support Vector Machines(structural SVMs) 및 수정된 Pegasos 알고리즘을 이용한 한국어 개체명 인식 시스템에 대하여 기술하고 기존의 Conditional Random Fields(CRFs)를 이용한 시스템과의 성능을 비교한다. 실험결과 structural SVMs과 수정된 Pegasos 알고리즘이 기존의 CRFs 보다 높은 성능을 보였고(신뢰도 99%에서 통계적으로 유의함), structural SVMs과 수정된 Pegasos 알고리즘의 성능은 큰 차이가 없음(통계적으로 유의하지 않음)을 알 수 있었다. 특히 본 논문에서 제안하는 수정된 Pegasos 알고리즘을 이용한 경우 CRFs를 이용한 시스템보다 높은 성능 (TV 도메인 F1=85.43, 스포츠 도메인 F1=86.79)을 유지하면서 학습 시간은 4%로 줄일 수 있었다.

  • PDF

Extended Support Vector Machines for Object Detection and Localization

  • Feyereisl, Jan;Han, Bo-Hyung
    • The Magazine of the IEIE
    • /
    • v.39 no.2
    • /
    • pp.45-54
    • /
    • 2012
  • Object detection is a fundamental task for many high-level computer vision applications such as image retrieval, scene understanding, activity recognition, visual surveillance and many others. Although object detection is one of the most popular problems in computer vision and various algorithms have been proposed thus far, it is also notoriously difficult, mainly due to lack of proper models for object representation, that handle large variations of object structure and appearance. In this article, we review a branch of object detection algorithms based on Support Vector Machines (SVMs), a well-known max-margin technique to minimize classification error. We introduce a few variations of SVMs-Structural SVMs and Latent SVMs-and discuss their applications to object detection and localization.

  • PDF

Development of Intelligent Credit Rating System using Support Vector Machines (Support Vector Machine을 이용한 지능형 신용평가시스템 개발)

  • Kim Kyoung-jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.7
    • /
    • pp.1569-1574
    • /
    • 2005
  • In this paper, I propose an intelligent credit rating system using a bankruptcy prediction model based on support vector machines (SVMs). SVMs are promising methods because they use a risk function consisting of the empirical error and a regularized term which is derived from the structural risk minimization principle. This study examines the feasibility of applying SVM in Predicting corporate bankruptcies by comparing it with other data mining techniques. In addition. this study presents architecture and prototype of intelligeht credit rating systems based on SVM models.

Corporate Bond Rating Using Various Multiclass Support Vector Machines (다양한 다분류 SVM을 적용한 기업채권평가)

  • Ahn, Hyun-Chul;Kim, Kyoung-Jae
    • Asia pacific journal of information systems
    • /
    • v.19 no.2
    • /
    • pp.157-178
    • /
    • 2009
  • Corporate credit rating is a very important factor in the market for corporate debt. Information concerning corporate operations is often disseminated to market participants through the changes in credit ratings that are published by professional rating agencies, such as Standard and Poor's (S&P) and Moody's Investor Service. Since these agencies generally require a large fee for the service, and the periodically provided ratings sometimes do not reflect the default risk of the company at the time, it may be advantageous for bond-market participants to be able to classify credit ratings before the agencies actually publish them. As a result, it is very important for companies (especially, financial companies) to develop a proper model of credit rating. From a technical perspective, the credit rating constitutes a typical, multiclass, classification problem because rating agencies generally have ten or more categories of ratings. For example, S&P's ratings range from AAA for the highest-quality bonds to D for the lowest-quality bonds. The professional rating agencies emphasize the importance of analysts' subjective judgments in the determination of credit ratings. However, in practice, a mathematical model that uses the financial variables of companies plays an important role in determining credit ratings, since it is convenient to apply and cost efficient. These financial variables include the ratios that represent a company's leverage status, liquidity status, and profitability status. Several statistical and artificial intelligence (AI) techniques have been applied as tools for predicting credit ratings. Among them, artificial neural networks are most prevalent in the area of finance because of their broad applicability to many business problems and their preeminent ability to adapt. However, artificial neural networks also have many defects, including the difficulty in determining the values of the control parameters and the number of processing elements in the layer as well as the risk of over-fitting. Of late, because of their robustness and high accuracy, support vector machines (SVMs) have become popular as a solution for problems with generating accurate prediction. An SVM's solution may be globally optimal because SVMs seek to minimize structural risk. On the other hand, artificial neural network models may tend to find locally optimal solutions because they seek to minimize empirical risk. In addition, no parameters need to be tuned in SVMs, barring the upper bound for non-separable cases in linear SVMs. Since SVMs were originally devised for binary classification, however they are not intrinsically geared for multiclass classifications as in credit ratings. Thus, researchers have tried to extend the original SVM to multiclass classification. Hitherto, a variety of techniques to extend standard SVMs to multiclass SVMs (MSVMs) has been proposed in the literature Only a few types of MSVM are, however, tested using prior studies that apply MSVMs to credit ratings studies. In this study, we examined six different techniques of MSVMs: (1) One-Against-One, (2) One-Against-AIL (3) DAGSVM, (4) ECOC, (5) Method of Weston and Watkins, and (6) Method of Crammer and Singer. In addition, we examined the prediction accuracy of some modified version of conventional MSVM techniques. To find the most appropriate technique of MSVMs for corporate bond rating, we applied all the techniques of MSVMs to a real-world case of credit rating in Korea. The best application is in corporate bond rating, which is the most frequently studied area of credit rating for specific debt issues or other financial obligations. For our study the research data were collected from National Information and Credit Evaluation, Inc., a major bond-rating company in Korea. The data set is comprised of the bond-ratings for the year 2002 and various financial variables for 1,295 companies from the manufacturing industry in Korea. We compared the results of these techniques with one another, and with those of traditional methods for credit ratings, such as multiple discriminant analysis (MDA), multinomial logistic regression (MLOGIT), and artificial neural networks (ANNs). As a result, we found that DAGSVM with an ordered list was the best approach for the prediction of bond rating. In addition, we found that the modified version of ECOC approach can yield higher prediction accuracy for the cases showing clear patterns.

Target Detection and Navigation System for a mobile Robot

  • Kim, Il-Wan;Kwon, Ho-Sang;Kim, Young-Joong;Lim, Myo-Taeg
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2337-2341
    • /
    • 2005
  • This paper presents the target detection method using Support Vector Machines(SVMs) and the navigation system using behavior-based fuzzy controller. SVM is a machine-learning method based on the principle of structural risk minimization, which performs well when applied to data outside the training set. We formulate detection of target objects as a supervised-learning problem and apply SVM to detect at each location in the image whether a target object is present or not. The behavior-based fuzzy controller is implemented as an individual priority behavior: the highest level behavior is target-seeking, the middle level behavior is obstacle-avoidance, the lowest level is an emergency behavior. We have implemented and tested the proposed method in our mobile robot "Pioneer2-AT". Comparing with a neural-network based detection method, a SVM illustrate the excellence of the proposed method.

  • PDF

Application of Support Vector Machines to the Prediction of KOSPI

  • Kim, Kyoung-jae
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2003.05a
    • /
    • pp.329-337
    • /
    • 2003
  • Stock market prediction is regarded as a challenging task of financial time-series prediction. There have been many studies using artificial neural networks in this area. Recently, support vector machines (SVMs) are regarded as promising methods for the prediction of financial time-series because they me a risk function consisting the empirical ewer and a regularized term which is derived from the structural risk minimization principle. In this study, I apply SVM to predicting the Korea Composite Stock Price Index (KOSPI). In addition, this study examines the feasibility of applying SVM in financial forecasting by comparing it with back-propagation neural networks and case-based reasoning. The experimental results show that SVM provides a promising alternative to stock market prediction.

  • PDF

Two dimensional reduction technique of Support Vector Machines for Bankruptcy Prediction

  • Ahn, Hyun-Chul;Kim, Kyoung-Jae;Lee, Ki-Chun
    • 한국경영정보학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.608-613
    • /
    • 2007
  • Prediction of corporate bankruptcies has long been an important topic and has been studied extensively in the finance and management literature because it is an essential basis for the risk management of financial institutions. Recently, support vector machines (SVMs) are becoming popular as a tool for bankruptcy prediction because they use a risk function consisting of the empirical error and a regularized term which is derived from the structural risk minimization principle. In addition, they don't require huge training samples and have little possibility of overfitting. However. in order to Use SVM, a user should determine several factors such as the parameters ofa kernel function, appropriate feature subset, and proper instance subset by heuristics, which hinders accurate prediction results when using SVM In this study, we propose a novel hybrid SVM classifier with simultaneous optimization of feature subsets, instance subsets, and kernel parameters. This study introduces genetic algorithms (GAs) to optimize the feature selection, instance selection, and kernel parameters simultaneously. Our study applies the proposed model to the real-world case for bankruptcy prediction. Experimental results show that the prediction accuracy of conventional SVM may be improved significantly by using our model.

  • PDF