• 제목/요약/키워드: strontium Ion

검색결과 58건 처리시간 0.023초

pH와 이온강도가 나트륨-운모를 이용한 방사성 핵종 흡착제거에 미치는 영향 (Effect of pH and ionic strength on the removal of radionuclide by Na-mica)

  • 설빛나;조윤철
    • 상하수도학회지
    • /
    • 제28권1호
    • /
    • pp.83-89
    • /
    • 2014
  • The aim of this study is to investigate the sorption/ion exchange of radioactive nuclides such as $Cs^+$ and $Sr^{2+}$ by synthetic Na-micas. In order to prepare Na-micas, two natural micas (phlogopite and biotite) were used as precursor materials. XRD, SEM, and EDS analyses were used to examine material characterization of synthetic Na-micas. Analyses of materials revealed that Na-micas were successfully obtained from natrual micas by K removal treatment. On the other hand, single solute (Cs or Sr) and bi-solute (Cs/Sr) sorption experiments were carried out to determine sorption capacity of Na-micas for Cs and Sr under different pH and ionic strength conditions. Uptake of Cs and Sr by micas in bi-solute system was lower than in single-solute system. Additionally, Langmuir and Langmuir competitive models were applied to describe sorption isotherm of Na-micas. bi-solute system was well described by Langmuir competitive models. For the results obtained in this study, Na-micas could be promising sorbents to treat multi-radioactive species from water and groundwater.

제주 화산석으로 합성한 제올라이트를 Polyacrylonitrile에 고정화한 흡착제를 이용한 구리와 스트론튬 이온의 제거 (Removal of Cu and Sr Ions using Adsorbent Obtained by Immobilizing Zeolite Synthesized from Jeju Volcanic Rocks in Polyacrylonitrile)

  • 이창한;이민규
    • 한국환경과학회지
    • /
    • 제27권12호
    • /
    • pp.1215-1226
    • /
    • 2018
  • In this study, PAN-SZ (polyacrylonitrile scoria zeolite) beads were prepared by immobilizing Na-A zeolite (SZ-A) synthesized from Jeju volcanic rocks (scoria) on the polymer PAN. FT-IR and TGA analysis results confirmed that the SZ-A was immobilized in the PAN-SZ beads. SEM images showed that the PAN-SZ beads are a spherical shape with 2 mm diameter and exhibit a porous inner structure inside the bead. The most suitable mixing ratio of PAN to SZ-A as the adsorbent for removing Sr ions was PAN/SZ-A = 0.2 g/0.3 g. The adsorption kinetic data for Cu and Sr ions were fitted well with the pseudo-second-order model. The Cu and Sr ion uptakes followed a Langmuir isotherm model and the maximum adsorption capacities at $20^{\circ}C$ were 84.03 mg/g and 75.19 mg/g, respectively. The amount of Sr ion adsorbed by SZ-A on the PAN-SZ beads was about 160 mg/g, which was similar to that adsorbed by SZ-A powder. Thus, the PAN-SZ beads prepared in this study are considered to be effective adsorbents for removing metal ions in aqueous solutions.

Oxygen Permeation Properties and Phase Stability of Co-Free $La_{0.6}Sr_{0.4}Ti_{0.2}Fe_{0.8}O_{3-{\delta}}$ Oxygen Membrane

  • Kim, Ki-Young;Park, Jung-Hoon;Kim, Jong-Pyo;Son, Sou-Hwan;Park, Sang-Do
    • Korean Membrane Journal
    • /
    • 제9권1호
    • /
    • pp.34-42
    • /
    • 2007
  • A perovskite-type ($La_{0.6}Sr_{0.4}Ti_{0.2}Fe_{0.8}O_{3-{\delta}}$) dense ceramic membrane was prepared by polymerized complex method, using citric acid as a chelating agent and ethylene glycol as an organic stabilizer. Effect of Ti addition on lanthanum-strontium ferrite mixed conductor was investigated by evaluating the thermal expansion coefficient, the oxygen flux, the electrical conductivity, and the phase stability. The thermal expansion coefficient in air was $21.19\;{\times}\;10^{-6}/K$ at 473 to 1,223 K. At the oxygen partial pressure of 0.21 atm ($20%\;O_2$), the electrical conductivity increased with temperature and then decreased after 973 K. The decrement in electrical conductivity at high temperatures was explained by a loss of the lattice oxygen. The oxygen flux increased with temperature and was $0.17\;mL/cm^2{\cdot}min$ at 1,223 K. From the temperature-dependent oxygen flux data, the activation energy of oxygen ion conduction was calculated and was 80.5 kJ/mol at 1,073 to 1,223 K. Also, the Ti-added lanthanum-strontium ferrite mixed conductor was structurally and chemically stable after 450 hours long-term test at 1,173 K.

Effects of Sr Contents on Structural Change and Electrical Conductivity in Cu-doped LSM ($La_{1-x}Sr_xMn_{0.8}Cu_{0.2}O_{3{\pm}{\delta}}$)

  • 류지승;노태민;김진성;정철원;이희수
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.33.1-33.1
    • /
    • 2011
  • Strontium doped lanthanum manganite (LSM) with perovskite structure for SOFC cathode material shows high electrical conductivity and good chemical stability, whereas the electrical conductivity at intermediate temperature below $800^{\circ}C$ is not sufficient due to low oxygen ion conductivity. The approach to improve electrical conductivity is to make more oxygen vacancies by substituting alkaline earths (such as Ca, Sr and Ba) for La and/or a transition metal (such as Fe, Co and Cu) for Mn. Among various cathode materials, $LaSrMnCuO_3$ has recently been suggested as the potential cathode materials for solid oxide fuel cells (SOFCs). As for the Cu doping at the B-site, it has been reported that the valence change of Mn ions is occurred by substituting Cu ions and it leads to formation of oxygen vacancies. The electrical conductivity is also affected by doping element at the A-site and the co-doping effect between A-site and B-site should be described. In this study, the $La_{1-x}Sr_xMn_{0.8}Cu_{0.2}O_{3{\pm}{\delta}}$ ($0{\leq}x{\leq}0.4$) systems were synthesized by a combined EDTA-citrate complexing process. The crystal structure, morphology, thermal expansion and electrical conductivity with different Sr contents were studied and their co-doping effects were also investigated.

  • PDF

자연 토양에서의 방사성 핵종(Co, Sr)의 흡/탈착 거동 특성 평가 (Analysis of Sorption and Desorption Behaviors of Radionuclides (Cobalt and Strontium) in Natural Soil)

  • 천경호;신원식;최정학;최상준
    • 한국방사성폐기물학회:학술대회논문집
    • /
    • 한국방사성폐기물학회 2005년도 춘계 학술대회
    • /
    • pp.485-495
    • /
    • 2005
  • 본 연구에서는 자연토양에 대한 방사성 핵종(Co, Sr)의 단일 성분의 흡착 및 탈착 거동 특성과 Carboxymethyl-${\beta}$-cyclodextrin(CMCD)를 이용한 탈착저항성에 대한 연구를 수행하였다. 방사성핵종의 흡착 거동을 살펴보기 위하여 흡착속도 실험과 등온 흡착 실험을 수행 하였으며, 흡착 실험 결과를 기존의 흡착 모델식에 적용하여 보았다. 탈착 실험은 일정한 pH와 이온강도 조건에서 CMCD를 주입하였을 때와 주입하지 않았을 때의 탈착경향을 비교분석 하였다. 흡착 실험 결과 자연토양에 대해 스트론튬(Sr)이 코발트(Co) 보다 흡착이 잘 되었고, 코발트, 스트론튬 모두 흡착 속도는 pseudo-second order model을, 그리고 등온 흡착결과는 Sips model을 따르는 것으로 나타났다. 방사성 핵종의 탈착은 비가역적인 형태의 탈착거동을 보였으며, CMCD의 주입량 증가함에 따라 탈착도 증가하는 결과를 나타냈다.

  • PDF

작용기 적용 다공성 금속 유기골격체를 이용한 수중 세슘 및 스트론튬 이온의 흡착 제거 (Adsorption of Cesium and Strontium Ions in Aqueous Phase Using Porous Metal Organic Frameworks Connected with Functional Group)

  • 이준엽;최정학
    • 한국환경과학회지
    • /
    • 제30권1호
    • /
    • pp.97-108
    • /
    • 2021
  • In the current study, MIL-101(Cr)-SO3H[HCl] as metal-organic frameworks (MOFs) was fabricated via a hydrothermal method. The physicochemical properties of the synthesized material were characterized using XRD, FT-IR, FE-SEM, TEM, and BET surface area analysis. The XRD diffraction pattern of the prepared MIL-101(Cr)-SO3H[HCl] was similar to previously reported patterns of MIL-101(Cr) type materials, indicating successful synthesis of MIL-101(Cr)-SO3H[HCl]. The FT-IR spectrum revealed the molecular structure and functional groups of the synthesized MIL-101(Cr)-SO3H[HCl]. FE-SEM and TEM images indicated the formation of rectangular parallelopiped structures in the prepared MIL-101(Cr)-SO3H[HCl]. Furthermore, the EDS spectrum showed that the synthesized material consisted of the elements of Cr, O, S, and C. The fabricated MIL-101(Cr)-SO3H[HCl] was then employed as an adsorbent for the removal of Sr2+ and Cs+ from aqueous solutions. The adsorption kinetics and adsorption isotherm models were studied in detail. The maximum adsorption capacities of MIL-101(Cr)-SO3H[HCl] for Sr2+ and Cs+ according to pH (3, 5.3~5.8, 10) were 35.05, 43.35, and 79.72 mg/g and 78.58, 74.58, and 169.74 mg/g, respectively. These results demonstrate the potential of the synthesized MOFs, which can be effectively applied as an adsorbent for the removal of Sr2+ and Cs+ ions from aqueous solutions and other diverse applications.

Simultaneous Determination of Alkaline Earth Metal Ions by a Conventional High Performance Liquid Chromatographic System

  • Rho, Young-Soo;Choi, Seung-Gi
    • Archives of Pharmacal Research
    • /
    • 제9권4호
    • /
    • pp.211-214
    • /
    • 1986
  • A simultaneous determination method of alkaline earth metals was attempted with the conventional high performance liquid chromatographic system. Four cations, namely, magnesium, calcium, strontium and barium ion, were injected directly as aqueous solution into an eluent containing copper chloride solution and and were successfully separated and determined on a separating column (Zipax SCX, 4.6 mm i.d. ${\times}25$ cm length, Du Pont, USA) by using a variable wavelength UV detector. The linear calibration curves were obtianed in the range from $1.0{\times}10^{-4}M$ to $5.0{\times}10^{-4}M$ and the correlation coefficient of the calibration curve for each metal of magnesium and calcium in tap water. Alkaline earth metals were determined with the conventional high performance liquid chromatographic system.

  • PDF

INORGANIC AND BIO-MATERIALS IN THE REMOVAL/SPECIATION OF RADIOCESIUM AND RADIOSTRONTIUM : AN OVERVIEW

  • Tiwari, Diwakar;Prasad, S.K.;Yang, Jae-Kyu;Choi, Bong-Jong;Lee, Seung-Mok
    • Environmental Engineering Research
    • /
    • 제11권2호
    • /
    • pp.106-125
    • /
    • 2006
  • Cesium and strontium are two important fission products and the removal/speciation of these two cations with several inorganic/bio-materials is an interesting topic to discuss. It is to be noted that inorganic materials are found to be fairly effective and efficient in the removal/speciation of these cations. Moreover, these solids are to be found promising as they show fairly good radiation and temperature stability. Hence, they play an important role in the radioactive waste management studies. However, various studies reveal that in addition to inorganic materials various biosorbents can also be employed in the removal/speciation of these ions. But the radiation and temperature stability of these bio-sorbents and dead biomasses are still the topic lying among the researchers to be investigated.

Premixed MTA제재의 pH, 이온 유리 정도, 용해도 (pH, Ion Release Capability, and Solubility Value of Premixed Mineral Trioxide Aggregates)

  • 백설아;장유지;이정환;이준행;신지선;김종빈;한미란;김종수
    • 대한소아치과학회지
    • /
    • 제49권4호
    • /
    • pp.379-391
    • /
    • 2022
  • 이 연구는 premixed MTA 제재와 기존 치수복조제의 경화 전, 후의 pH 값 그리고 칼슘, 황, 스트론튬 이온의 유리량, 용해도를 비교했다. 사용된 재료는 다음과 같다 : 레진 강화형 칼슘실리케이트(TheraCal LC®; TLC), 레진 강화형 수산화칼슘(UBP, Ultra-BlendTM plus), 2종류의 premixed MTA(Endocem MTA® premixed regular [EMPR] and Well-RootTM PT [WRP]). 각 재료의 시편은 경화 전, 경화 후 2군으로 나누어 준비한 뒤 증류수에 보관하였다. pH, 용해도를 측정하였으며 ICP-AES를 이용한 칼슘, 황, 스트론튬의 3가지 이온 유리량을 측정하였다. 경화 후 군에서 TLC와 UBP의 pH 값은 감소했다. 그러나 premixed MTA 재료의 pH 값은 증가했다. TLC는 다른 재료와 비교하여 스트론튬 이온 유리량이 더 많았다. 동시에 EMPR에서 황이온 유리량이 높았다(p < 0.05). 경화 후 군에서 칼슘 이온 방출은 두 종류의 premixed MTA에서 더 높았다(p < 0.05). 경화 후 군에서 용해도는 Kruskal-Wallis 서 test를 이용하여 통계분석하였고 Mann-Whitney U test를 이용하여 사후검정하였다. 결론적으로 레진 강화형 칼슘 실리케이트 시멘트, 레진 강화형 수산화칼슘 시멘트, 2종류의 premixed MTAs 모두 경화 후 알칼리성 pH 값과 낮은 용해도를 가지고 있었으며 다양한 이온을 유리했다.

반응표면분석법을 이용한 석탄회로 합성한 제올라이트 X에서의 Sr 이온 제거특성 (Adsorption Characteristics of Sr Ions by Coal Fly Ash-Based-Zeolite X using Response Surface Modeling Approach)

  • 이창한;감상규;이민규
    • 한국환경과학회지
    • /
    • 제26권6호
    • /
    • pp.719-728
    • /
    • 2017
  • In order to investigate the adsorption characteristics for Sr ion using the Na-X zeolite synthesized from coal fly ash, batch tests and response surface analyses were carried out. The adsorption kinetic data for Sr ions, using Na-X zeolite, fitted well with the pseudo-second-order model. The uptake of Sr ions followed the Langmuir isotherm model, with a maximum adsorption capacity of 196.46 mg/g. Thermodynamic studies were conducted at different reaction temperatures, with the results indicating that Sr ion adsorption by Na-X zeolite was an endothermic (${\Delta}H^o$>0) and spontaneous (${\Delta}G^o$<0) process. Using the response surface methodology of the Box-Behnken method, initial Sr ion concentration ($X_1$), initial temperature ($X_2$), and initial pH ($X_3$) were selected as the independent variables, while the adsorption of Sr ions by Na-X zeolite was selected as the dependent variable. The experimental data fitted well with a second-order polynomial equation by multiple regression analysis. The value of the determination coefficient ($R^2=0.9937$) and the adjusted determination coefficient (adjusted $R^2=0.9823$) was close to 1, indicating high significance of the model. Statistical results showed the order of Sr removal based on experimental factors to be initial pH > initial concentration > temperature.