• Title/Summary/Keyword: strong wind speed

Search Result 308, Processing Time 0.026 seconds

Estimation of Air-Sea Heat Exchange Using BUOY Data at the Yellow Sea, Korea (부이 관측자료를 이용한 서해 해역의 해양-대기 열교환량 산출)

  • kang, Yune-Jeung;Hwang, Seung-On;Kim, Tae-Hee;Nam, Jae-Cheol
    • Journal of the Korean earth science society
    • /
    • v.22 no.1
    • /
    • pp.40-46
    • /
    • 2001
  • Heat exchange between the atmosphere and sea is produced using the data from two 3m discus buoy installed by KMA in 1996. The meteorological and oceanic characteristics at the Dukjukdo and Chilbaldo buoy for the period 1996 ${\sim}$ 2000 are discussed. Daily averaged sensible heat and latent heat flux at each site are estimated from bulk aerodynamic method using given data and analyzed. Quantitative analyses show SST indicates 1-year cycle like air temperature but has 1 month lag. Sea level pressure is lowest in July, humidity is higher from May to August, and wind speed has averaged value of 5 m/s and higher in autumn and winter. Sensible heat flux analyses present that strong heat loss from the sea occurs in autumn and winter and weak heat loss from atmosphere appears in spring and summer, and net sensible heat loss from the sea is found throughout the year. The ocean significantly releases latent heat into atmosphere from August to May but get a little latent heat from atmosphere in other months. Net latent heat loss from the sea is larger than net sensible heat loss except in January and February. Comparison with two sites suggests that the magnitude of heat flux and their fluctuation are generally stronger at Dukjukdo than at Chilbaldo. In case study, both sensible and latent heat flux is a little more at Chilbaldo in March 1998, but substantially stronger at Dukjukdo in November 1996.

  • PDF

The Spectral Characteristics of Climatological Variables over the Asian Dust Source Regions and its Association with Particle Concentrations in Busan (황사 발원지 기후자료의 시계열 특성과 부산지역 먼지 농도의 연관성 분석)

  • Son, Hye-Young;Kim, Cheol-Hee
    • Journal of the Korean earth science society
    • /
    • v.30 no.6
    • /
    • pp.734-743
    • /
    • 2009
  • In order to examine how climatological condition can influence on urban scale particulate air pollutants, single and cross spectrum analysis have been performed to daily mean concentrations of particulate matters ($PM_{10}$) in Busan together with the climatological variables over the Asian dust source regions. Single power spectrum analysis of $PM_{10}$ concentrations in Busan shows that, aside from the typical and well-known periodicities, 3-4 year of peak periodicity of power spectrum density was identified. In cross spectrum analysis, this 3-4 year periodicity is found to have a strong positive correlation with the wind speed and pressure, and negative with the temperature and relative humidity, which is rather consistent with both characteristics of air mass during the Asian dust event whose periodicities have been recorded inter-annually over the Korean urban cities. Over the Asian dust source regions, $PM_{10}$ vs. precipitation shows no significant periodicity from the time series of precipitation data, but the periodicity of EDI (Effective Drought Index) shows some interannual variabilities ranging from 2 to 4 years over the various source regions, suggesting that, rather than precipitation itself, the EDI could be more closely associated with the occurrence frequency of Asian dust and interannual variability of urban particle concentrations in Korean cities.

The Spatial Distribution of Snowfall and its Development Mechanism over the Honam Area (호남 지방의 국지적 강설 분포와 그 차이의 원인에 관한 연구)

  • Lee Seung-Ho;Lee Kyoung-Mi
    • Journal of the Korean Geographical Society
    • /
    • v.41 no.4 s.115
    • /
    • pp.457-469
    • /
    • 2006
  • This study aims to understand the characteristics of spatial distribution of snowfall and to analyze its development mechanism in Honam province in Korea. The areas of snowfall in Honan area can be divided into the seven sub-area by snowfall pattern. In the west coastal area of heavy snowfall and the southwest coastal area of heavy snowfall, snowfall develops over reason of ocean by Siberian High while in the northern inland area of heavy snowfall and the southern inland area of heavy snowfall, it develops when a strong Siberian High affects to inland. Then, much snowfall is by a forced ascending due to topography in Namwon, Imsil and Gwangju of the northwestward of the Noryung and Sobaek mountain ranges while it is weak in Jeonju and Suncheon of the low plains and the southeastward. In the mountainous area of heavy snowfall and the south coastal area of light snowfall, cyclone is also one of causes of snowfall. In the southwest coastal area, snowfall is meager than the southwest coastal area of heavy snowfall because this area is far from the west coast. It is confirmed that the snowfall difference of the coast, inland and mountainous area appears by temperature difference of sea surface and 850hPa temperature, wind speed of Siberian High.

A Study on Prediction of Asian Dusts Using the WRF-Chem Model in 2010 in the Korean Peninsula (WRF-Chem 모델을 이용한 2010년 한반도의 황사 예측에 관한 연구)

  • Jung, Ok Jin;Moon, Yun Seob
    • Journal of the Korean earth science society
    • /
    • v.36 no.1
    • /
    • pp.90-108
    • /
    • 2015
  • The WRF-Chem model was applied to simulate the Asian dust event affecting the Korean Peninsula from 11 to 13 November 2010. GOCART dust emission schemes, RADM2 chemical mechanism, and MADE/SORGAM aerosol scheme were adopted within the WRF-Chem model to predict dust aerosol concentrations. The results in the model simulations were identified by comparing with the weather maps, satellite images, monitoring data of $PM_{10}$ concentration, and LIDAR images. The model results showed a good agreement with the long-range transport from the dust source area such as Northeastern China and Mongolia to the Korean Peninsula. Comparison of the time series of $PM_{10}$ concentration measured at Backnungdo showed that the correlation coefficient was 0.736, and the root mean square error was $192.73{\mu}g/m^3$. The spatial distribution of $PM_{10}$ concentration using the WRF-Chem model was similar to that of the $PM_{2.5}$ which were about a half of $PM_{10}$. Also, they were much alike in those of the UM-ADAM model simulated by the Korean Meteorological Administration. Meanwhile, the spatial distributions of $PM_{10}$ concentrations during the Asian dust events had relevance to those of both the wind speed of u component ($ms^{-1}$) and the PBL height (m). We performed a regressive analysis between $PM_{10}$ concentrations and two meteorological variables (u component and PBL) in the strong dust event in autumn (CASE 1, on 11 to 23 March 2010) and the weak dust event in spring (CASE 2, on 19 to 20 March 2011), respectively.

Pollution Characteristics of PM2.5 Observed during Winter and Summer in Baengryeongdo and Seoul (겨울 및 여름철 백령도와 서울에서 측정한 PM2.5 오염 특성)

  • Yu, Geun-Hye;Park, Seung-Shik;Park, Jong Sung;Park, Seung Myeong;Song, In Ho;Oh, Jun;Shin, Hye Jung;Lee, Min Do;Lim, Hyung Bae;Kim, Hyun Woong;Choi, Jin Young
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.1
    • /
    • pp.38-55
    • /
    • 2018
  • Hourly measurements of $PM_{2.5}$ mass, organic and elemental carbon (OC and EC), and water-soluble ionic species were made at the air quality intensive monitoring stations in Baengryeongdo (BR) and Seoul (SL) during the winter (December 01~31, 2013) and summer (July 10~23, 2014) periods, to investigate the increase of $PM_{2.5}$ and secondary ionic species and the reasons leading to their increase during the two seasons. During winter, $PM_{2.5}$ and its major chemical species concentrations were higher at SL than at BR. Contribution of organic mass to $PM_{2.5}$ was approximately 1.7 times higher at BR than at SL, but the $NO_3{^-}$ contribution was two times higher at SL. Total concentration of secondary ionic species ($SO{_4}^{2-}$, $NO_3{^-}$, and $NH_4{^+}$) at BR and SL sites accounted for 29.1 and 40.1% of $PM_{2.5}$, respectively. However, during summer, no significant difference in chemical composition of $PM_{2.5}$ was found between the two sites with the exception of $SO{_4}^{2-}$. Total concentration of the secondary ionic species constituted on average 43.9% of $PM_{2.5}$ at BR and 53.0% at SL. A noticeable difference in chemical composition between the two sites during summer was attributed to $SO{_4}^{2-}$, with approximately twofold concentration and 10% higher contribution in SL. Low wind speed and high relative humidity were important factors in secondary formation of water-soluble ionic species during winter at SL, resulting in $PM_{2.5}$ increase. While the secondary formation during summer was attributed to strong photochemical processes in daytime and high relative humidity in nighttime hours. The increase of $PM_{2.5}$ and its secondary ionic species during the winter haze pollution period at SL was mainly caused either by long-range transport (LTP) from the eastern Chinese regions, or by local pollution. However, the increased $SO{_4}^{2-}$ and $NO_3{^-}$ during summer at SL were mainly caused by LTP, photochemical processes in daytime hours, and heterogeneous processes in nighttime hours.

Assessment of Emission Data for Improvement of Air Quality Simulation in Ulsan (울산 지역 대기질 모의능력 개선을 위한 배출량자료 평가)

  • Jo, Yu-Jin;Kim, Cheol-Hee
    • Journal of Environmental Impact Assessment
    • /
    • v.24 no.5
    • /
    • pp.456-471
    • /
    • 2015
  • Emission source term is one of the strong controlling factors for the air quality simulation capability, particularly over the urban area. Ulsan is an industrial area and frequently required to simulate for environmental assessment. In this study, two CAPSS (Clean Air Policy Support System) emission data; CAPSS-2003 and CAPSS-2010 in Ulsan, were employed as an input data for WRF-CMAQ air quality model for emission assessment. The simulated results were compared with observations for the local emission dominant synoptic conditions which had negative vorticities and lower geostrophic wind speed at 850hPa weather maps. The measurements of CO, $NO_2$, $SO_2$ and $PM_{10}$ concentrations were compared with simulations and the 'scaling factors' of emissions for CO, $NO_2$, $SO_2$, and $PM_{10}$ were suggested in in aggregative and quantitative manner. The results showed that CAPSS-2003 showed no critical discrepancies of CO and $NO_2$ observations with simulations, while $SO_2$ was overestimated by a factor of more than 12, while $PM_{10}$ was underestimated by a factor of more than 20 times. However, CAPSS-2010 case showed that $SO_2$ and $PM_{10}$ emission were much more improved than CAPSS-2003. However, $SO_2$ was still overestimated by a factor of more than 2, and $PM_{10}$ underestimated by a factor of 5, while there was no significant improvement for CO and $NO_2$ emission. The estimated factors identified in this study can be used as'scaling factors'for optimizing the emissions of air pollutants, particularly $SO_2$ and $PM_{10}$ for the realistic air quality simulation in Ulsan.

Vegetation on Basic, Alkaloid, Arid Land of the Whole Area of Baicheng City, Jilin Province, China (중국(中國) 길림성(吉林省) 백성시(白城市) 일대의 염성(鹽性), 알칼리성 건조지(乾操地) 식생(植生)에 관한 연구)

  • Ahn, Young-Hee;Wang, Bai-Cheng;Jin, Ying-Hua;Choe, Chang-Young;Xuan, Yong-Nan;Song, Dong-Ok
    • Korean Journal of Environment and Ecology
    • /
    • v.23 no.1
    • /
    • pp.90-98
    • /
    • 2009
  • Every spring, Korea is always plagued by sandy dust from the western region of China and Mongolia. Yellow sand is causing an environmental problem to Japan and far into the American continent, let alone Korea. At present, the western region of China is going under desertification at a great speed due to climatic change and humans' damaging activities. To cope with this, each country including China is considering ecological restoration of deserts through planting. Accordingly, this research conducted a vegetation survey on Baicheng district which is a representative dry land of western China to obtain a basic data for ecological restoration of a desert. The survey revealed that Setaria viridis which invaded an arid land made a succession into Setaria viridis-Cannabis sativa var. fruderalis community together with Artemisia mongolica-Setaria viridis community due to the increase in salt concentration and alkalization subsequent to dryness. It was also found out that there finally formed Artemisia mongolica community on a flat intense in harsh wind and dryness with the continuous worsening of environmental conditions. There appeared a different type of vegetation on hilly districts where sporadic shade could come into being because the air humidity could be available relatively there. Frequently, typically appearing at the whole survey area, the Tributlus terrestris community was found to make succession into Tribulus terrestris-Cleisrogenes squarrosa community due to the aggravation of soil environment. In addition, with the worsening of the environment at hilly districts, there formed Clesirogenes squarrosa community resistant to dryness, salinity in soil and strong alkalinity. Further, there appeared higher plant life totalling to 62 taxa comprising 58 species and 4 varieties with 27 families and 49 genuses at the whole survey area. Among these, Compositae plants excellent in resistance to environment was surveyed the most, accounting for 27%.

Detection of flash drought using evaporative stress index in South Korea (증발스트레스지수를 활용한 국내 돌발가뭄 감지)

  • Lee, Hee-Jin;Nam, Won-Ho;Yoon, Dong-Hyun;Mark, D. Svoboda;Brian, D. Wardlow
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.8
    • /
    • pp.577-587
    • /
    • 2021
  • Drought is generally considered to be a natural disaster caused by accumulated water shortages over a long period of time, taking months or years and slowly occurring. However, climate change has led to rapid changes in weather and environmental factors that directly affect agriculture, and extreme weather conditions have led to an increase in the frequency of rapidly developing droughts within weeks to months. This phenomenon is defined as 'Flash Drought', which is caused by an increase in surface temperature over a relatively short period of time and abnormally low and rapidly decreasing soil moisture. The detection and analysis of flash drought is essential because it has a significant impact on agriculture and natural ecosystems, and its impacts are associated with agricultural drought impacts. In South Korea, there is no clear definition of flash drought, so the purpose of this study is to identify and analyze its characteristics. In this study, flash drought detection condition was presented based on the satellite-derived drought index Evaporative Stress Index (ESI) from 2014 to 2018. ESI is used as an early warning indicator for rapidly-occurring flash drought a short period of time due to its similar relationship with reduced soil moisture content, lack of precipitation, increased evaporative demand due to low humidity, high temperature, and strong winds. The flash droughts were analyzed using hydrometeorological characteristics by comparing Standardized Precipitation Index (SPI), soil moisture, maximum temperature, relative humidity, wind speed, and precipitation. The correlation was analyzed based on the 8 weeks prior to the occurrence of the flash drought, and in most cases, a high correlation of 0.8(-0.8) or higher(lower) was expressed for ESI and SPI, soil moisture, and maximum temperature.