• 제목/요약/키워드: strong culm gene

검색결과 2건 처리시간 0.018초

Development of the pyramiding lines with strong culm genes derived from crosses among the SCM near isogenic lines in rice

  • Ookawa, Taiichiro;Kamahora, Eri;Ebitani, Takeshi;Yamaguchi, Takuya;Murata, Kazumasa;Iyama, Yukihide;Ozaki, Hidenobu;Adachi, Shunsuke;Hirasawa, Tadashi;Kanekatsu, Motoki
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.21-21
    • /
    • 2017
  • Severe lodging has recurrently occurred at strong typhoon's hitting in recent climate change. The identification of quantitative trait loci (QTLs) and their responsible genes associated with a strong culm and their pyramiding are important for developing high-yielding varieties with a superior lodging resistance. To identify QTLs for lodging resistance, the tropical japonica line, Chugoku 117 and the improved indica variety, Habataki were selected as the donor parent, as these had thick and strong culms compared with the temperate japonica varieties in Japan such as Koshihikari. By using chromosome segment substitution lines (CSSLs) in which chromosome segments from the japonica variety were replaced to them from Habataki, we identified the QTLs for strong culm on chrs. 1 and 6, which were designated as STRONG CULM1 (SCM1) and STRONG CULM2 (SCM2), respectively. By using recombinant inbred lines (BILs) derived from a cross between Chugoku 117 and Koshihikari and introgression lines, we also identified the other QTLs for strong culm on chrs. 3 and 2, which were designated as STRONG CULM3 (SCM3) and STRONG CULM4 (SCM4), respectively. Candidate region of SCM1 includes Gn1 related to grain number. SCM2 was identical to APO1, a gene related to the control of panicle branch number, and SCM3 was identical to FC1, a strigolactone signaling associated gene, by performing fine mapping and positional cloning of these genes. To evaluate the effects of SCM1~SCM4 on lodging resistance, the Koshihiakri near isogenic line (NIL) with the introgressed SCM1 or SCM2 locus of Habataki (NIL-SCM1, NIL-SCM2) and the another Koshihikari NIL with the introgeressed SCM3 or SCM4 locus of Chugoku 117 (NIL-SCM3, NIL-SCM4) were developed. Then, we developed the pyramiding lines with double or triple combinations derived from step-by-step crosses among NIL-SCM1 NIL-SCM4. Triple pyramiding lines (NIL-SCM1+2+3, ~ NIL-SCM1+3+4) showed the largest culm diameter and the highest culm strength among the combinations and increased spikelet number due to the pleiotropic effects of these genes. Pyramiding of strong culm genes resulted in much increased culm thickness, culm strength and spikelet number due to their additive effect. SCM1 mainly contributed to enhance their pyramiding effect. These results in this study suggest the importance of identifying the combinations of superior alleles of strong culm genes among natural variation and pyramiding these genes for improving high-yielding varieties with a superior lodging resistance.

  • PDF

Novel quantitative trait loci for the strong-culm and high-yield related traits in rice detected from the F2 population between the super thick-culm and super grain-bearing line 'LTAT-29' and the high-yielding variety 'Takanari'

  • Nomura, Tomohiro;Yamamoto, Toshio;Ueda, Tadamasa;Yonemaru, Junichi;Abe, Akira;Adachi, Shunsuke;Hirasawa, Tadashi;Ookawa, Taiichiro
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.95-95
    • /
    • 2017
  • Lodging is a serious issue in rice production, because it drastically decreases the biomass production and grain yield. Since the Green Revolution, the lodging resistance has been increased by lowering the moment of above-ground parts due to the short culm by the semi-dwarf gene sd1. However, it has been pointed out that sd1 alone has suppressive effects for biomass production and yield. To increase rice yield, the long-culm and large panicle type varieties with a superior lodging resistance need to be developed. To improve the lodging resistance and yield of these type varieties, it would be effective to identify novel alleles for these traits underlying natural variations in rice and to pyramid these alleles to a single rice variety. In order to perform this strategy, we have developed new rice lines derived from crosses among varieties with superior alleles. At first, TULT-gh-5-5 was selected from a cross between strong culm and high biomass variety Leaf Star and high-yielding variety Takanari, and TUAT-32HB was selected from a cross between high-yielding variety Akenohoshi and Takanari. Then, we developed the super thick-culm and super grain-bearing line, LTAT-29 derived from a cross between TULT-gh-5-5 and TUAT-32HB. In the current study, to identify the QTLs and genes relating to the strong culm and the high yield of LTAT-29, we performed QTL analysis using SNPs markers with $F_2$ population derived from a cross between LTAT-29 and Takanari. LTAT-29 has never lodged throughout the growth period despite it had long culms and heavy panicles. LTAT-29 had a larger outer diameter of the culm and twice the size of the section modulus than Takanari. As a result, the bending moment at breaking of LTAT-29 was significantly larger than that of Takanari. Brown rice yield of LTAT-29 was $9.2t\;ha^{-1}$ about 10% higher than that of Takanari due to the larger number of spikelets per panicle. LTAT-29 had a greater number of secondary branches per panicle. In the $F_2$ population between LTAT-29 and Takanari, we found continuous frequency distributions in the section modulus and the spikelet number per panicle. Two QTLs increased the section modulus by the alleles of LTAT-29 were detected on Chr.1L and Chr.2L. One QTL increased the spikelet number per panicle of Takanari by the allele of LTAT-29 was detected on Chr.1L, and two QTLs increased the number of secondary branches per panicle by the alleles of LTAT-29 were detected on Chr.1L and Chr.4L. It was found that the alleles of these QTLs were the japonica type originated from Leaf Star or Akenohoshi. The novel QTLs for the traits related to super thick-culm and super grain-bearing and their combinations could be utilized for improving the lodging resistance and yield in rice varieties.

  • PDF