• Title/Summary/Keyword: stretching cylinder

Search Result 13, Processing Time 0.02 seconds

A Study on the Elongation of Polymer Extrusion Film (고분자압출필름의 연신에 관한 연구)

  • Choi, Man-Sung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.660-665
    • /
    • 2014
  • Optimization of process parameters in polymer extrusion is an important task to reduce manufacturing cost. To determine the optimum values of the process parameters, it is essential to find their influence on the elongation of polymer breathable thin film. The significance of six important process parameters namely, extruder cylinder temperature, extruder speed, extruder dies temperature, cooling roll temperature, stretching ratio, stretching roll temperature on breathable film elongation of polymer extrusion was determined. Moreover, this paper presents the application of Taguchi method and analysis of variance(ANOVA) for maximization of the breathable film elongation influenced by extrusion parameters. The optimum parameter combination of extrusion process was obtained by using the analysis of signal-to-noise ratio. The conclusion revealed that stretching ratio were the most influential factor on the film elongation. The best results of film elongation were obtained at lower stretching ratio.

Evaluation of Fracture Toughness Using Small Punch Test for Aluminum 6061-T6 Type-3 Cylinder Liner (소형펀치시험법을 이용한 알루미늄 6061-T6 Type-3 용기 라이너의 파괴인성 평가)

  • Ma, Young-Wha;Lee, Seong-Hoon;Yoon, Kee-Bong
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.4
    • /
    • pp.21-26
    • /
    • 2011
  • Type-3 cylinder liner has a limitation of machining the standard specimen for fracture toughness test because it has approximately 5 mm in thickness as well as a curvature. Hence, it needs to be employed a miniature specimen test technique to evaluate fracture toughness of the cylinder liner. In this study, small punch (SP) test method was employed to evaluate fracture toughness of the cylinder liner. Load-displacement curve result measured from the SP test showed that the liner material was failed during membrane stretching in the general SP load-displacement curve. Additionally, it was shown that liner material was isotropic although the amount of plastic deformation was different depending on the direction due to manufacturing process characteristics. Fracture toughness, $J_{Ic}$, was evaluated using the SP test data. The value of fracture toughness obtained was $13.0kJ/m^2$. This value was similar to that of the same kind of materials. Therefore, the fracture toughness evaluated using the SP test data was reasonable.

Interaction of casson nanofluid with Brownian motion: Temperature profile with shooting method

  • Iqbal, Waheed;Jalil, Mudassar;Khadimallah, Mohamed A.;Hussain, Muzamal;Naeem, Muhammad N.;Al Naim, Abdullah F.;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.10 no.4
    • /
    • pp.349-357
    • /
    • 2021
  • In present study, the numerical investigations are carried out for effects of suction and blowing on boundary layer slip flow of casson nano fluid along permeable stretching cylinder in an exponential manner. The modeled PDEs are changed into nonlinear ODEs through appropriate nonlinear transformations. Change in physical quantities like friction coefficient, Nusselt and Sherwood numbers with variation of the aforementioned parameters are also examined and their numerical values are listed in the form of tables. Effects of Reynold number, suction parameter, Prandtl number, Lewis number, Brownian motion parameter and thermophoresis parameter are seen graphically with temperature profile.