• Title/Summary/Keyword: stress-induced

Search Result 5,041, Processing Time 0.034 seconds

Protective Effects of Jihwangeumja on Oxidative Stress-induced Injury of Human Umbilical Vein Endothelial Cells (혈관내피세포의 산화적 손상에 대한 지황음자의 방어기전 연구)

  • 정용준;장재호;이대용;이민구;전인철;정대영;이인;신선호;문병순
    • The Journal of Korean Medicine
    • /
    • v.25 no.2
    • /
    • pp.173-183
    • /
    • 2004
  • Objectives : Oxidative stress can induce negative responses such as growth inhibition or cell death by necrosis or apoptosis due to the intensity of the oxidative stress, as well as positive responses such as cellular proliferation or activation. We examined the effect of Jihwangeumja on this process. Methods and Results : We analyzed the influence of oxidative stress and agents that modify its effect in human umbilical vein endothelial cell (HUVEC). Oxidative stress was induced by $B_2O_2$. With induced oxidative stress the results obtained indicate that it has a harmful effect over cell function and viability, and that this effect is dose and time dependent. When oxidative stress increased, Jihwangeumja reduced cell damage and had protective functions. $B_2O_2$, induced the apoptosis of HUVEC through the activation of intrinsic caspases pathway as well as mitochondrial dysfunction. A significant increase in cell survival was observed in culture cells with oxidative stress when they were treated with Jihwangeumja. Conclusions : These results suggest that Jihwangeumja may be potentially useful to treat HUVEC against oxidative damages mediated by modulation of caspase protease and mitochondrial dysfunction.

  • PDF

Anti-stress Effects of Ursodexycholic Acid on the Restraint Stress in Rats (흰쥐에서 구속스트레스에 대한 우루소데옥시콜린산의 항스트레스 효과)

  • 조태순;이선미;염제호;유은주;임승욱;장병수;김영만;유영효;박명환
    • YAKHAK HOEJI
    • /
    • v.39 no.5
    • /
    • pp.548-553
    • /
    • 1995
  • Effects of restraint stress and its modulations by ursodeoxycholic acid(UDCA) were evaluated on some biochemical and biophysical parameters in rats. Restraint stress induced elevations in blood alkaline phosphatase (ALP). cholesterol (CHOL), aspartate transaminase (GOT), alanine transaminase (GPT), lactate dehydrogenase (LDH) levels. It was also caused adrenal hypertrophy, decrease in weight of spleen and contents of ascorbic acid in stressed rats. As a results, stress indicators such as spleen, ascorbic acid, GOT, GPT, LDH were fastly changed after imposing stress, but those such as ALP, CHOL, adrenal were induced relatively later. UDCA was tested if it has an inhibitory effect against 18-hr restraint induced stress. UDCA lowered ALP, CHOL, LDH level and also effectively elevated the ascorbic acid contents in 25 mg/kg dosage of UDCA. In organ weights. the restraint stress induced increases in spleen and adrenal were attenuated by UDCA in 50 mg/kg dosage. However. stress-induced GOT and GPT levels were unaffected by UDCA.

  • PDF

Effects of induced heat stress on temperature response and biochemistry: alteration of biochemical constituents in Holstein calves by heat stress

  • Lim, Hyun-Joo;Ki, Kwang-Seok
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.3
    • /
    • pp.637-643
    • /
    • 2019
  • The aim of the present study was to evaluate the effect of the induced heat stress on physiological response and serum biochemical parameters involving glucose, cholesterol, blood urea nitrogen (BUN), non-esterified fatty acids (NEFA), and cortisol in Holstein calves. Ten calves were kept in a climate controlled room (air temperature $37^{\circ}C$ and 90% humidity from 09:00 to 19:00) for three days. Those animals were given a one-day adaptation period. During the treatment period, we measured the skin temperature six times. Following the treatment periods, blood samples were collected before the experiment began (09:00) and at the end of the stress period (19:00). To aid analysis of the biochemical parameters, also we monitored the rectal temperature. The results, exhibited that both rectal and skin temperature showed increase in the heat stress-induced animals as compared with unstressed animals. Moreover, we noticed that the levels of BUN and NEFA increased in the blood serum of heat stress induced animals when compared with un-stressed ones. From these results, we concluded that the physiological and biochemical changes in the calves were induced by heat stress. Hence, the present study findings could be employed as base line data for development of stress reduction techniques in the dairy industry.

Effects of Soyosan Water Extract on the Immune-depressed Mice Induced by Stress (소요산전탕액(逍遙散煎湯液)이 Stress부하(負荷) 생쥐의 면역억제(免疫抑制)에 미치는 영향(影響))

  • Kim, Jae-Sub
    • The Journal of Internal Korean Medicine
    • /
    • v.19 no.1
    • /
    • pp.247-270
    • /
    • 1998
  • The more society has complicated, the more we have met stressful circumstance. And it is found that many physical and mental symptoms induced by stress. Soyosan(SYS) is one of the well-known oriental medicine for the treatment of general syndrome induced by emotional stress. This study was taken to know effects of SYS water extract on immune-depressed mice induced by stress. The results obtained in this study were as follows : 1. SYS inhibited murine weight-loss induced by stress 2. In vivo& in vitro, SYS increased phagocytic activity. 3. SYS enhanced the production of such reactive oxygen intermediates as superoxide and hydrogen peroxide from macrophages. 4. In vitro, SYS little influenced the production of reactive nitrogen intermediates. 5. SYS increased the number of the rosette forming cells of spleen. 6. SYS changed the ratio of helper and suppressor T cells by increasing $CD4^+$ T cells and decreasing $CD8^+$ T cells. 7. SYS increased cytotoxic activity on human lymphoma cell line(K562). 8. SYS increased the plasma level of GH and DHEA. whereas it decreased that of ACTH and cortisol. According to the above results, it might be considered that SYS would be used for immune-depressive disease induced by stress.

  • PDF

Phloroglucinol Attenuates Free Radical-induced Oxidative Stress

  • So, Mi Jung;Cho, Eun Ju
    • Preventive Nutrition and Food Science
    • /
    • v.19 no.3
    • /
    • pp.129-135
    • /
    • 2014
  • The protective role of phloroglucinol against oxidative stress and stress-induced premature senescence (SIPS) was investigated in vitro and in cell culture. Phloroglucinol had strong and concentration-dependent radical scavenging effects against nitric oxide (NO), superoxide anions ($O_2{^-}$), and hydroxyl radicals. In this study, free radical generators were used to induce oxidative stress in LLC-PK1 renal epithelial cells. Treatment with phloroglucinol attenuated the oxidative stress induced by peroxyl radicals, NO, $O_2{^-}$, and peroxynitrite. Phloroglucinol also increased cell viability and decreased lipid peroxidation in a concentration-dependent manner. WI-38 human diploid fibroblast cells were used to investigate the protective effect of phloroglucinol against hydrogen peroxide ($H_2O_2$)-induced SIPS. Phloroglucinol treatment attenuated $H_2O_2$-induced SIPS by increasing cell viability and inhibited lipid peroxidation, suggesting that treatment with phloroglucinol should delay the aging process. The present study supports the promising role of phloroglucinol as an antioxidative agent against free radical-induced oxidative stress and SIPS.

An anti-clastogenic Role of Selenium in Arsenic- and Chromium-induced Oxidative Stress Causing Chromosomal Damages (비소와 크롬에 의한 산화적 스트레스와 염색체 상해에 대한 셀레늄의 방어 효과)

  • 기혜성;손은희;박영철;맹승희;정해원
    • Journal of Environmental Health Sciences
    • /
    • v.23 no.4
    • /
    • pp.9-15
    • /
    • 1997
  • This experiment was carried out to examine the roles of selenium in arsenic- and chromium-induced oxidative stress, which results in chromosomal damage, such as sister chromatid exchange (SCE) and chromosomal aberration (CA). For this purpose, the frequency of CA and SCE related to the level of 0xidative stress were analyzed. Selenium decreased the frequency of CA induced by As. In order to evaluate the effect of selenium on clastogenic factors, media from As- and Cr-treated cells were ultrafiltered and added again to cells in the presence or absence of selenium. Selenium decreased the frequency of SCE by As and Cr. This observation indicates the possibility of presence of clastogenic factor. In addition, the clastogenic factor would be involed in oxidative stress since selenium decreased the level of oxidative stress. Thus, it is suggested that selenium may play a role as an anti-clastogenic effector by preventing the oxidative stress, thereby decreasing the frequency of Asand Cr-induced chromosomal damage.

  • PDF

Phelligridin D maintains the function of periodontal ligament cells through autophagy in glucose-induced oxidative stress

  • Kim, Ji-Eun;Kim, Tae-Gun;Lee, Young-Hee;Yi, Ho-Keun
    • Journal of Periodontal and Implant Science
    • /
    • v.50 no.5
    • /
    • pp.291-302
    • /
    • 2020
  • Purpose: The objective of this study was to investigate whether phelligridin D could reduce glucose-induced oxidative stress, attenuate the resulting inflammatory response, and restore the function of human periodontal ligament cells (HPDLCs). Methods: Primary HPDLCs were isolated from healthy human teeth and cultured. To investigate the effect of phelligridin D on glucose-induced oxidative stress, HPDLCs were treated with phelligridin D, various concentrations of glucose, and glucose oxidase. Glucose-induced oxidative stress, inflammatory molecules, osteoblast differentiation, and mineralization of the HPDLCs were measured by hydrogen peroxide (H2O2) generation, cellular viability, alkaline phosphatase (ALP) activity, alizarin red staining, and western blot analyses. Results: Glucose-induced oxidative stress led to increased production of H2O2, with negative impacts on cellular viability, ALP activity, and calcium deposition in HPDLCs. Furthermore, HPDLCs under glucose-induced oxidative stress showed induction of inflammatory molecules (intercellular adhesion molecule-1, vascular cell adhesion protein-1, tumor necrosis factor-alpha, interleukin-1-beta) and disturbances of osteogenic differentiation (bone morphogenetic protein-2, and -7, runt-related transcription factor-2), cementogenesis (cementum protein-1), and autophagy-related molecules (autophagy related 5, light chain 3 I/II, beclin-1). Phelligridin D restored all these molecules and maintained the function of HPDLCs even under glucose-induced oxidative stress. Conclusions: This study suggests that phelligridin D reduces the inflammation that results from glucose-induced oxidative stress and restores the function of HPDLCs (e.g., osteoblast differentiation) by upregulating autophagy.

Effects of Bambusae Caulis in Liquamen on the Stress Proteins Induced by Heating in Endothelial Cells (혈관내피세포에 열 충격 부과시 죽력이 stress proteins의 발현에 미치는 영향)

  • Jeon Hoon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.2
    • /
    • pp.496-499
    • /
    • 2004
  • We have previously observed that Bambusae Caul is in Liquamen (BCL) stimulates the adipose conversion of 3T3-L1 cells and molecular chaperones were involved in the process of the assembly and replacement of laminin subunits in Bovine aortic endothelial cells(BAEC). Endothelial cells are exposed to continuous shear stress due to the blood flow. Heat shock protens(hsp) are a well-known stress response protein, namely, stress proteins. To investigate effects of BCL on the stress proteins induced by heating in endothelial cells, we have analyzed synthetic amounts of stress proteins in sodium dodecyl sulfate gel electrophoresis under reducing conditions. Under the condition of heating stress, BCL inhibited the synthesis of stress proteins in endothelial cells. These results suggest that BCL may have an important role for expression of stress proteins induced by heating in endothelial cells.

Effects of Panax ginseng and Ziziphus jujuba on stress-induced apoptosis in rats

  • Kim, Hyung-Chan
    • International Journal of Oral Biology
    • /
    • v.33 no.1
    • /
    • pp.7-12
    • /
    • 2008
  • PG has been well studied about effects of stress resistance. Although ZJ has been known that it had stress resistance effect since ancient times, its pharmacological properties and clinical applications have not been studied and reported until recently. Therefore, the purpose of this study is to determine whether effects of stress hormones, mechanism of stress protein could be induced by PG and ZJ of herb extract ingestion during stress exposure. In addition, this study identified expression of apoptosis factors related to stress. 1) Bcl-2 expression of the stressed rats decreased in comparison with the unstressed rats in heart and stomach. Bcl-2 expression of rats administered to PG was higher than the stressed rats in heart and that of rats administered to ZJ was higher than the stressed rats in stomach. 2) Stressed rats were decreased in p53 protein expression than normal rats. Thus, the results suggest stress-induced apoptosis is p53-independent apoptosis. And these results demonstrated that PG or ZJ administration helped to return from stress state to normal. 3) Clusterin expressed markedly in only salivary gland, but that of expression was no difference among four groups in tissues. Clusterin expression has no relation of stress-induced apoptosis.

Carbon monoxide releasing molecule-2 protects mice against acute kidney injury through inhibition of ER stress

  • Uddin, Md Jamal;Pak, Eun Seon;Ha, Hunjoo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.5
    • /
    • pp.567-575
    • /
    • 2018
  • Acute kidney injury (AKI), which is defined as a rapid decline of renal function, becomes common and recently recognized to be closely intertwined with chronic kidney diseases. Current treatment for AKI is largely supportive, and endoplasmic reticulum (ER) stress has emerged as a novel mediator of AKI. Since carbon monoxide attenuates ER stress, the objective of the present study aimed to determine the protective effect of carbon monoxide releasing molecule-2 (CORM2) on AKI associated with ER stress. Kidney injury was induced after LPS (15 mg/kg) treatment at 12 to 24 h in C57BL/6J mice. Pretreatment of CORM2 (30 mg/kg) effectively prevented LPS-induced oxidative stress and inflammation during AKI in mice. CORM2 treatment also effectively inhibited LPS-induced ER stress in AKI mice. In order to confirm effect of CO on the pathophysiological role of tubular epithelial cells in AKI, we used mProx24 cells. Pretreatment of CORM2 attenuated LPS-induced ER stress, oxidative stress, and inflammation in mProx24 cells. These data suggest that CO therapy may prevent ER stress-mediated AKI.