• Title/Summary/Keyword: stress wave velocity

Search Result 243, Processing Time 0.034 seconds

Rayleigh waves in orthotropic magneto-thermoelastic media under three GN-theories

  • Parveen Lata;Himanshi
    • Advances in materials Research
    • /
    • v.12 no.3
    • /
    • pp.211-226
    • /
    • 2023
  • The present work is considered to study the two-dimensional problem in an orthotropic magneto-thermoelastic media and examined the effect of thermal phase-lags and GN-theories on Rayleigh waves in the light of fractional order theory with combined effect of rotation and hall current. The boundary conditions are used to derive the secular equations of Rayleigh waves. The wave properties such as phase velocity, attenuation coefficient are computed numerically. The numerical simulated results are presented graphically to show the effect of phase-lags and GN-theories on the Rayleigh wave phase velocity, attenuation coefficient, stress components and temperature change. Some particular cases are also discussed in the present investigation.

Effect of Mountain Cultivated Ginseng Pharmacopuncture on Heart Rate Variability(HRV), Pulse Wave Velocity(PWV) in Middle Aged Women (산양삼약침이 정상 중년여성의 심박변이도(HRV), 맥파속도(PWV)에 미치는 영향)

  • Park, Sang-Wook;Kim, Yi-Soon;Hwang, Won-Deok;Kim, Gyeong-Cheol
    • Journal of Acupuncture Research
    • /
    • v.28 no.2
    • /
    • pp.97-105
    • /
    • 2011
  • Objectives : The aim of this experiment is to know the effect of mountain cultivated ginseng pharmacopuncture on heart rate variability(HRV), pulse wave velocity(PWV) in middle aged women. Methods : We investigated on 20 healthy Middle Aged women volunteers. First, we measured their heart rate variability(HRV), pulse wave velocity(PWV) and then mountain cultivated ginseng pharmacopuncture 20cc were injected on them. After 30 minutes, we measured heart rate variability(HRV), pulse wave velocity(PWV) again. As a result, method of one-group pretest-posttes design were used for evaluation. Results : 1. In HRV, MeanHRV is significantly decreased from 69.15 to 63.34 after injection. 2. MeanRR is significantly increased from 877.20 to 962.10 after injection. SDNN is significantly increased from 32.56 to 41.34 after injection. 3. PNN50 is significantly decreased after injection. RNSSD, SDSD, TP, VLF is significantly increased after injection. 4. Stress resistance ability is significantly increased from 37.55 to 44.60 after injection. 5. In PWV, E-R, E-L, H-R, H-L is significantly decreased after injection. Conclusions : Effect of mountain cultivated ginseng pharmacopuncture on heart rate variability(HRV) increased adaptability of autonomic nervous system and on pulse wave velocity(PWV) decreased arterial stiffness.

Dynamic response of free-end rod with consideration of wave frequency

  • Kim, Sang Yeob;Lee, Jong-Sub;Tutumluer, Erol;Byun, Yong-Hoon
    • Geomechanics and Engineering
    • /
    • v.28 no.1
    • /
    • pp.25-33
    • /
    • 2022
  • The energy transferred on drill rods by dynamic impact mainly determines the penetration depth for in-situ tests. In this study, the dynamic response and transferred energy of drill rods are determined from the frequency of the stress waves. AW-type drill rods of lengths 1 to 3 m are prepared, and strain gauges and an accelerometer are installed at the head and tip of the connected rods. The drill rods are hung on strings, allowing free vibration, and then impacted by a pendulum hammer with fixed potential energy. Increasing the rod length L increases the wave roundtrip time (2L/c, where c is the wave velocity), and hence the transferred energy at the rod head. At the rod tip, the first velocity peak is higher than the first force peak because a large and tensile stress wave is reflected, and the transferred energy converges to zero. The resonant frequency increases with rod length in the waveforms measured by the strain gauges, and fluctuates in the waveforms measured by the accelerometer. In addition, the dynamic response and transferred energy are perturbed when the cutoff frequency is lower than 2 kHz. This study implies that the resonant frequency should be considered for the interpretation of transferred energy on drill rods.

Dispersive Wave Analysis of a Beam under Impact Load by Piezo-Electric Film Sensor and Wavelet Transform (충격하중을 받는 보에서 압전 필름센서와 웨이브렛 변환을 이용한 문산파동의 해석)

  • Kwon., Il-Bum;Choi, Man-Yong;Jeong., Hyun-Jo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.4
    • /
    • pp.215-225
    • /
    • 2001
  • Stress waves monitored on the surface of structures under various loading conditions can provide useful information on the structural health status. In this paper, stress waves are measured by several sensors when a steel beam is impacted by a ball drop. The sensors used include the piezo-electric film Sensor, the electrical strain gage, and the ultrasonic transducer, and special attention is given to the pieza film sensor. The wavelet transform is used for the time-frequency analysis of dispersive waves propagating in the beam. The velocities of the wave produced in the team due to the lateral impact is found to be frequency-dependent and identified as the flexural wave velocity based on the comparisons with the Timoshenko beam theory. A linear impact site identification method is developed using the flexural wave, and the impact sites of the beam can be accurately estimated by the piezo film sensors. It is found that the piezo film sensor is appropriate for sensing stress waves due to impact and for locating impact sites in the beam.

  • PDF

Wave-Induced Soil Response around Submarine Pipeline (파랑작용에 의한 해저파이프라인 주변지반의 응답특성)

  • Hur, Dong-Soo;Kim, Chang-Hoon;Kim, Do-Sam
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.1 s.74
    • /
    • pp.31-39
    • /
    • 2007
  • Recently, the nonlinear dynamic responses among waves, submarine pipeline and seabed have become a target of analyses for marine geotechnical and coastal engineers. Specifically, the velocity field around the submarine pipeline and the wave-induced responses of soil, such as stress and strain inside seabed, have been recognized as dominant factors in discussing the stability of submarine pipeline. The aim of this paper is to investigate nonlinear dynamic responses of soil in seabed, around submarine pipeline, under wave loading. In order to examine wave-induced soil responses, first, the calculation is conducted in the whole domain, including wave field and the seabed, using the VOF-FDM method. Then, velocities and pressures, which are obtained on the boundary between the wave field and the seabed, are used as the boundary condition to compute the wave-induced stress and strain inside seabed, using the poro-elastic FEM model, which is based on the approximation of the Biot's equations. Based on the numerical results, the characteristics of wave-induced soil responses around submarine pipeline are investigated, in detail, inrelation to relative separate distance of the submarine pipeline from seabed. Also, the velocity field around the submarine pipeline is discussed.

Stiffness Characteristics of Salt Cementation according to Depth (깊이에 따른 소금의 고결화 강성특성)

  • Eom, Yong-Hun;Byun, Yong-Hoon;Truong, Q. Hung;Lee, Jong-Sub
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.472-481
    • /
    • 2009
  • Cementation phenomenon has a huge influence on geotechnical stiffness and strength under low confining pressure. The goal of this study is to evaluate the characteristics of stiffness according to the depth. The piezo disk elements are installed at each layer of the cell for the detection of the compressional waves. The change of compressional wave velocity is classified by three stages. The compressional wave velocities are shown different according to the depth. The compressional wave velocity is especially influenced by cementation, effective stress, and coordinate number. Furthermore, the electrical conductivity and cone tip resistance are measured according to the depth. The electrical conductivity and the cone tip resistance show the similar trend with the compressional wave velocity. This study shows that the cementation by salt is affected by the depth on the granular materials.

  • PDF

Interference between two dynamic cracks (동적 균열의 간섭)

  • 이억섭;최인성
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.714-718
    • /
    • 1996
  • The interference phenomenonof a dynamic crack propagation in a inclined DEN(double edge notched) specimen has been investigated by using the dynamic photoelasticity. One crack initiated by static loading is propagated dynamically and experiences a mixed mode condition(interference) as the crack approaches to the inclined edge notch. We use the overdeterministic least-square method to extract dynamic $K_{Id}$ K sub IId/and .sigma. $_{ox}$from the recorded dynamic photoelastic pattern surounding a running crack. The evaluated $K_{Id}$ $K_{IId}$and .sigma. $_{ox}$together with the crack propagation velocity estimate the dynamic crack interference phenomenonenonon

  • PDF

Settlement prediction for footings based on stress history from VS measurements

  • Cho, Hyung Ik;Kim, Han Saem;Sun, Chang-Guk;Kim, Dong Soo
    • Geomechanics and Engineering
    • /
    • v.20 no.5
    • /
    • pp.371-384
    • /
    • 2020
  • A settlement prediction method based on shear wave velocity measurements and soil nonlinearity was recently developed and verified by means of centrifuge tests. However, the method was only applicable to heavily overconsolidated soil deposits under enlarged yield surfaces. In this study, the settlement evaluation method was refined to consider the stress history of the sublayer, based on an overconsolidation ratio evaluation technique, and thereby incorporate irrecoverable plastic deformation in the settlement calculation. A relationship between the small-strain shear modulus and overconsolidation ratio, which can be determined from laboratory tests, was adopted to describe the stress history of the subsurface. Based on the overconsolidation ratio determined, the value of an empirical coefficient that reflects the effect of plastic deformation over the elastic region is determined by comparing the overconsolidation ratio with the stress increment transmitted by the surface design load. The refined method that incorporate this empirical coefficient was successfully validated by means of centrifuge tests, even under normally consolidated loading conditions.

A non-destructive method for elliptical cracks identification in shafts based on wave propagation signals and genetic algorithms

  • Munoz-Abella, Belen;Rubio, Lourdes;Rubio, Patricia
    • Smart Structures and Systems
    • /
    • v.10 no.1
    • /
    • pp.47-65
    • /
    • 2012
  • The presence of crack-like defects in mechanical and structural elements produces failures during their service life that in some cases can be catastrophic. So, the early detection of the fatigue cracks is particularly important because they grow rapidly, with a propagation velocity that increases exponentially, and may lead to long out-of-service periods, heavy damages of machines and severe economic consequences. In this work, a non-destructive method for the detection and identification of elliptical cracks in shafts based on stress wave propagation is proposed. The propagation of a stress wave in a cracked shaft has been numerically analyzed and numerical results have been used to detect and identify the crack through the genetic algorithm optimization method. The results obtained in this work allow the development of an on-line method for damage detection and identification for cracked shaft-like components using an easy and portable dynamic testing device.

An Assessment of the Prestress Force on the Bonded Tendon Using the Strain and the Stress Wave Velocity (변형률과 응력파속도를 이용한 부착식 텐던의 긴장력 평가)

  • Jang, Jung Bum;Hwang, Kyeong Min;Lee, Hong Pyo;Kim, Byeong Hwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3A
    • /
    • pp.183-188
    • /
    • 2012
  • The bonded tendon was adopted to the reactor containment building of some operating nuclear power plants in Korea and the assessment of the prestress force on the bonded tendon is very important for the evaluation of the structural integrity. The prestress force of the bonded tendon at real reactor containment building, was evaluated using the SI technique and impact signal analysis technique which were developed to improve the existing indirect assessmment technique. For these techniques, the strain of the reactor containment building and the stress wave velocity of the bonded tendon were measured. Both SI technique and impact signal analysis technique give the highly reliable results comparison with the existing theoretical approach. Therefore, it is confirmed that the developed techniques are very useful for the evaluation of the prestress force on the bonded tendon.