• Title/Summary/Keyword: stress singularity

Search Result 147, Processing Time 0.02 seconds

Boundary Element Analysis of Interface Stresses in a Thin Film Due to Moisture Absorption (수분 흡수로 인해 얇은 필름에 발생하는 계면 응력의 경계요소해석)

  • 이상순
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.04a
    • /
    • pp.19-26
    • /
    • 1999
  • This paper deals with the stress singularity induced at the interface corner between the viscoelastic thin film and the rigid substrate as the film absorbs moisture from the ambient environment. The rime-domain boundary element method is employed to investigate the behavior of interface stresses. The order of the free-edge singularity is obtained numerically for a given viscoelastic model. It is shown that the free-edge stress intensity factor is relaxed with time,'while the order of the singularity increases with time for the viscoelastic model considered.

  • PDF

Analysis of Thermal Stresses Developed in Bonding Interface of Semiconductor Chip (반도체 칩의 접착계면에 발생하는 열응력 해석)

  • 이상순
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.437-443
    • /
    • 1999
  • This paper deals with the stress singularity induced at the interface corner between the viscoelastic thin film and the rigid substrate subjected to uniform temperature change. The viscoelastic film has been assumed to be thermorheologically simple. The time-domain boundary element method(BEM) has been employed to investigate the behavior of interface stresses. The order of the free-edge singularity has been obtained numerically for a given viscoelastic model. It is shown that the free-edge stress intensity factor is relaxed with time, while the order of the singularity increases with time for the viscoelastic model considered.

  • PDF

Evaluation of Static Strength on Ceramic /Metal Bonded Joints Considering Stress Singularity (응력특이성을 고려한 세라믹/금속 접합재의 정적강도평가)

  • 김기성
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.6 no.1
    • /
    • pp.59-68
    • /
    • 1997
  • Recently, the cases of using bonded dissimiliar materials which have each of the different components tend to increase for the purpose of developing new materials and using the special objects in the field of industry. Among the cases the strength evaluation of the joining materials of vehicle engine and the structural materials with ceramic/metal bonded joints becomes more important. But the residual stress occurs, because the joining of ceramics and metals is performed in extremely high temperature. It becomes a dominant cause to reduce the strength of the ceramic/metal bonded joints. In this paper, strength evaluation method of ceramic/metal bonded joints considering stress singularity was investigated by boundary element method and 4-point bending test. An advanced method of quantitative strength evaluation for ceramin/metal bonded joints is to be suggested.

  • PDF

Geometric Optimization Involving Contact Stress Singularities (특이 접촉응력 문제의 형상 최적화)

  • Park, Jung-sun;Lee, Soo-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.180-188
    • /
    • 1996
  • The stress singularity of a sharp wedge contacting a half plane can be avoided by changing the wedge shape. Shape optimization is accomplished with the geometric strain method (GSM), an optimality criterion method. Several numerical examples are provided for different materials in the wedge and half plane to avoid stress singularity neal the sharp corner of the wedge. Optimum wedge shapes are obtained and critical corner angles are compared with the angles from analytical contact mechanics. Numerical results are well matched to analytical and experimental results. It is shown that shape optimization by the geometric strain method is a useful tool to reshape the wedge and to avoid a stress singulatiry. The method applies to more general geometries where the singular behavior would be difficult to avoid by classical means.

Prediction of crack propagation path in IC package by BEM (경계요소법에 의한 반도체 패키지의 균열진전경로 예측)

  • Song, Chun-Ho;Chung, Nam-Yong
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.286-291
    • /
    • 2001
  • Applications of bonded dissimilar materials such as IC package, ceramic/metal and resin/metal bonded joints, are very increasing in various industry fields. It is very important to analyze the thermal stress and stress singularity at interface edges in bonded joints of dissimilar materials. In orer to understand the package crack emanating from the edge of Die pad and Resin, fracture mechanics of bonded dissimilar materials and material properties are obtained. In this paper, the thermal stress and its singularity index for the IC package were analyzed using 2-dimensional elastic boundary element method. Crack propagation angle and path by thermal stress were numerically simulated with boundary element method.

  • PDF

Establishment of Fracture Criterion on Friction Welded Dissimilar Materials (이종 마찰용접재의 파괴기준 설정)

  • Chung, Nam-Yong;Park, Cheol-Hee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.164-171
    • /
    • 2006
  • Application of friction welding is increasing in the manufacturing process of machine elements in many industry fields. To establish a reasonable strength evaluation method and fracture criterion, it is necessary to analyze stress singularity under the residual stress condition on friction welded interface between dissimilar materials. In this paper, a method to establish fracture criterion on interface of friction welded dissimiliar materials was investigated by using the boundary element method BEM and static tensile testing. A quantitative fracture criterion for friction welded dissimilar materials is suggested by using stress singularity factor, $\Gamma$.

A Study on the Bonding Residual Thermal Stress Analysis of Dissimilar Materials Using Boundary Element Method (경계요소법에 의한 이종재료 접합 잔류열응력의 해석)

  • Yi, Won;Yu, Yeong-Chul;Jeong, Eui-Seob;Yun, In-Sik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.15 no.4
    • /
    • pp.540-548
    • /
    • 1996
  • In general residual stress is measured by X-ray diffraction method but in case of bonding residual thermal stress it is inadequate technique to examine the stress singularity. Therefore Two-dimensional elastic boundary element analyses were carried out to investigate the residual thermal stress and stress singularity of bonding interface in Al/Epoxy. This boundary element results were compared with the strain gauge measurements. The effects of different interface models, sub-element and adherend thickness are presented and discussed. On the basis of the obtained results, interface delamination causing by normal stress is expected and stress singularity is observed more intensively increasing with adherend thickness. It is concluded that the bonding strength of Al/Epoxy interface can be estimated correctly by taking into account the stress singularity at the edge of the interface.

  • PDF

Order of Stress Singularities at Bonded Edge Corners with Two or Three Dissimilar Materials in the Eletronic Package (전자부품 패키지에 내재된 두재료 혹은 세재료 접합점에 대한 응력특이차수)

  • Choe, Seong-Ryeol;Gwon, Yong-Su;Park, Sang-Seon;Park, Jae-Wan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.135-145
    • /
    • 1996
  • Order of stress singularities at bonded Edge Corners with two or three dissimilar isotropic Materials is analyzed. The problem is formulated by Mellin transform and characteristic equation is obtained as a determinant of matrix considering boundary conditions. Roots of characterictic equation are determinde by numerical calculations with ward method, from which the order of stress sigularities is obtained. Applying the results to the electronic packaging, the order of stress singularities is obtained. Applying the results to the electronic packaging, the order of stress singularities at bounded edge corners is calculated as a various bouned edge angle with given material combinations. Comparing the results, the optimal material combinaitons of bounded edge corners and bouned edge angle to reduce stress singularity could be determined. It suggests that the results are used to the basic design of electronic packaging reducing the stress singularity.

p-Adaptive Finite Element Analysis of Stress Singularity Problems by Ordinary Kriging Interpolation (정규 크리깅보간법을 이용한 응력특이문제의 p-적응적 유한요소해석)

  • Woo Kwang-Sung;Park Mi-Young;Park Jin-Hwan;Han Sang-Hyun
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.849-856
    • /
    • 2006
  • This paper is to examine the applicability of ordinary Kriging interpolation(OK) to the p-adaptivity of the finite element analysis that is based on variogram. In the p-refinement, the analytical domain has to be refined automatically to obtain an acceptable level of accuracy by increasing the p-level non-uniformly or selectively. In case of non-uniform p-distribution, the continuity between elements with different polynomial orders is achieved by assigning zero higher-order derivatives associated with the edge in common with the lower-order derivatives. It is demonstrated that the validity of the proposed approach by analyzing results for stress singularity problem.

  • PDF

The Free Edge Stress Singularity At An Interface of Bilinear Material Structure (탄성 선형 경화 재료로 구성된 복합 구조물의 자유 경계면에서 나타나는 응력특이도)

  • 정철섭
    • Computational Structural Engineering
    • /
    • v.10 no.3
    • /
    • pp.185-193
    • /
    • 1997
  • The order of the stress singularity that occurs at the termination of an interface between materials exhibiting bilinear stress-strain response under plane strain conditions has been calculated, The governing equation of elasticity together with traction-free boundary condition and interface continuity condition defines a two-point boundary value problem. The stress components near the free edge are assumed to be proportional to r/sup s-1/, with solutions existing only for certain values of s. Finding these values entails the solution of an eigenvalue problem. Because it has been impossible to integrate the differential equations analytically, the integration has been performed numerically with a shooting method coupled with a Newton improvement scheme.

  • PDF