• Title/Summary/Keyword: stress simulation

Search Result 2,246, Processing Time 0.03 seconds

Constraints and opportunities to sustain future wheat yield and water productivity in semi-arid environment

  • Ahmad, Mirza Junaid;Choi, Kyung-Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.185-185
    • /
    • 2019
  • Sustaining future wheat production is challenged by anthropogenically forced climate warming and drying led by increased concentration of greenhouse gases all around the globe. Warming stresses, originating from the elevated $CO_2$ concentration, are continuously reported to have negative impacts on wheat growth and yield. Yet, elevated $CO_2$ concentration, despite being disparagingly blamed for promoting warming, is also associated with a phenomenon called $CO_2$ enrichment; in which wheat yield can improve due to the enhanced photosynthesis rates and less water loss through transpiration. The conflicting nature of climate warming and $CO_2$ enrichment and their interplay can have specific implications under different environments. It is established form the field and simulation studies that the two contrasting phenomena would act severely in their own respect under arid and semi-arid environments. Wheat is a dietary staple for masses in Pakistan. The country's wheat production system is under constant stress to produce more from irrigated agricultural lands, primarily lying under arid to semi-arid environments, to meet the rapidly growing domestic needs. This work comprehensively examines the warming impacts over wheat yield and water productivity (WP), with and without the inclusion of $CO_2$ enrichment, under semi-arid environment of Punjab which is the largest agricultural province of Pakistan. Future wheat yields and WPs were simulated by FAO developed AquaCrop model v 5.0. The model was run using the bias-correction climate change projections up to 2080 under two representative concentration pathways (RCP) scenarios: 4.5 and 8.5. Wheat yield and WPs decreased without considering the $CO_2$ enrichment effects owing to the elevated irrigation demands and accelerated evapotranspiration rates. The results suggested that $CO_2$ enrichment could help maintain the current yield and WPs levels during the 2030s (2021-2050); however, it might not withhold the negative climate warming impacts during the 2060s (2051-2080). Furthermore, 10 - 20 day backward shift in sowing dates could also help ease the constraints imposed by climate warming over wheat yields and WPs. Although, $CO_2$ enrichment showed promises to counteract the adverse climate warming impacts but the interactions between climate warming and $CO_2$ concentrations were quite uncertain and required further examination.

  • PDF

A study on the behaviour of single piles to adjacent Shield TBM tunnelling by considering face pressures (막장압의 크기를 고려한 Shield TBM 터널 근접시공이 단독말뚝의 거동에 미치는 영향에 대한 연구)

  • Jeon, Young-Jin;Kim, Jeong-Sub;Jeon, Seung-Chan;Jeon, Sang-Joon;Park, Byung-Soo;Lee, Cheol-Ju
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.6
    • /
    • pp.1003-1022
    • /
    • 2018
  • In the current work, a series of three-dimensional finite element analyses were carried out to understand the behaviour of a pre-existing single pile to the changes of the tunnel face pressures when a shield TBM tunnel passes underneath the pile. The numerical modelling analysed the results by considering various face pressures (25~100% of the in-situ horizontal stress prior to tunnelling at the tunnel springline). In the numerical modelling, several key issues, such as the pile settlements, the axial pile forces, the shear stresses have been thoroughly analysed for different face pressures. The head settlements of the pile with the maximum face pressure decreased by about 44% compared to corresponding settlement with the minimum face pressure. Furthermore, the maximum axial force of the pile developed with the minimum face pressure. The tunnelling-induced axial pile force at the minimum face pressure was found to be about 21% larger than that with the maximum face pressure. It has been found that the ground settlements and the pile settlements are heavily affected by the face pressures. In addition, the influence of the piles and the ground was analysed by considering characteristics of the soil deformations. Also, the apparent safety factor of the piles are substantially reduced for all the analyses conducted in the current simulation, resulting in severe effects on the adjacent piles. Therefore, the behaviour of the piles, according to change the face pressures, has been extensively examined and analysed by considering the key features in great details.

Numerical modelling of Fault Reactivation Experiment at Mont Terri Underground Research Laboratory in Switzerland: DECOVALEX-2019 TASK B (Step 2) (스위스 Mont Terri 지하연구시설 단층 내 유체 주입시험 모델링: 국제공동연구 DECOVALEX-2019 Task B(Step 2))

  • Park, Jung-Wook;Guglielmi, Yves;Graupner, Bastian;Rutqvist, Jonny;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.29 no.3
    • /
    • pp.197-213
    • /
    • 2019
  • We simulated the fault reactivation experiment conducted at 'Main Fault' intersecting the low permeability clay formations of Mont Terri Underground Research Laboratory in Switzerland using TOUGH-FLAC simulator. The fluid flow along a fault was modelled with solid elements and governed by Darcy's law with the cubic law in TOUGH2, whereas the mechanical behavior of a single fault was represented by creating interface elements between two separating rock blocks in FLAC3D. We formulate the hydro-mechanical coupling relation of hydraulic aperture to consider the elastic fracture opening and failure-induced dilation for reproducing the abrupt changes in injection flow rate and monitoring pressure at fracture opening pressure. A parametric study was conducted to examine the effects of in-situ stress condition and fault deformation and strength parameters and to find the optimal parameter set to reproduce the field observations. In the best matching simulation, the fracture opening pressure and variations of injection flow rate and monitoring pressure showed good agreement with field experiment results, which suggests the capability of the numerical model to reasonably capture the fracture opening and propagation process. The model overestimated the fault displacement in shear direction and the range of reactivated zone, which was attributed to the progressive shear failures along the fault at high injection pressure. In the field experiment results, however, fracture tensile opening seems the dominant mechanism affecting the hydraulic aperture increase.

Estimation of Permanent Displacement of Gravity Quay Wall Considering Failure Surface under Seismic Loading (지진 시 파괴면을 고려한 중력식 안벽의 영구변위 평가)

  • Han, Insuk;Ahn, Jae-Kwang;Park, Duhee;Kwon, Osoon
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.4
    • /
    • pp.15-26
    • /
    • 2019
  • The stability of the gravity quay wall against earthquakes is evaluated on the basis of the allowable displacement of the wall. To estimate the displacement caused by external forces, empirical equations based on the Newmark sliding block method or numerical analysis are widely used. In numerical analysis, it is possible to analyze precisely a complicated site and structure, but difficult to set the appropriate parameters and environments; there are limitations in obtaining reliable results, depending on one's level of expertise. The Newmark method, with only seismic motions, is widely used because it is simpler than numerical simulations when estimating permanent displacement. However, the empirical equations do not have any parameters for the response characteristics and sliding block of the structure, and sliding blocks being assumed as rigid bodies does not consider the nonlinear behavior of the soil and interaction with the structure. Therefore, in order to evaluate the seismic stability of the gravity quay wall, a newly-developed empirical equation is needed to overcome the above-mentioned limitations. In this study, numerical simulations are performed to analyze the response characteristics of the backfill of the structure, and to propose an optimal method of calculating the active area. For this purpose, finite element analyses were performed to analyze the response characteristics, and stress-strain relationships for various seismic motions. As a result, the response characteristics, sliding block, and failure surface of the backfill vary depending on the input seismic motions.

Analysis on dam operation effect and development of an function formula and automated model for estimating suitable site (댐의 운영효과 분석과 적지선정 함수식 및 자동화 모형 개발)

  • Choo, Taiho;Kim, Yoonku;Kim, Yeongsik;Yun, Gwanseon
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.3
    • /
    • pp.187-194
    • /
    • 2019
  • Intake ratio from river constitutes about 31% (8/26) that beings to "water stress country" as "Medium ~ High" with China, India, Italy, South Africa, etc. Therefore, the present study on a dam that is the most effective and direct for securing water resources has been performed. First of all, climate change scenarios were investigated and analyzed. RCP 4.5 and 8.5 with 12.5 km grid resolution presented in the IPCC (Intergovernmental Panel on Climate Change) 5th Assessment Report (AR5) were applied to study watershed using SWAT (Soil and Water Assessment Tool) and HEC-ResSim models that carried out co-operation. Based on the results of dam simulation, the reduction effects of floods and droughts were quantitatively presented. The procedures of dam projects of the USA, Japan and Korea were investigated. As a result, there are no estimating quantitative criteria, calculating methods or formulas. In the present study, therefore, indexes for selecting suitable dam site through literature investigation and analyzing dam watersheds were determined, Expert questionnaire for various indexes were performed. Based on the above mentioned investigation and expert questionnaire, a methodology assigning weight using AHP method were proposed. The function of suitable dam (FSDS) site was calibrated and verified for four medium-sized watersheds. Finally, automated model for suitable dam site was developed using FSDS and 'Model builder' of GIS tool.

Preliminary Study on the Development of a Platform for the Optimization of Beach Stabilization Measures against Beach Erosion II - Centering on the Development of Physics-Based Morphology Model for the Estimation of an Erosion Rate of Nourished Beach (해역별 최적 해빈 안정화 공법 선정 Platform 개발을 위한 기초연구 II - 양빈 된 해빈 침식률 산정을 위한 물리기반 해빈 지형모형 개발을 중심으로)

  • Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.5
    • /
    • pp.320-333
    • /
    • 2019
  • In this study, a physics-based 3D morphology model for the estimation of an erosion rate of nourished beach is newly proposed. As a hydrodynamic module, IHFOAM toolbox having its roots on the OpenFoam is used. On the other hand, the morphology model comprised a transport equation for suspended sediment, and Exner type equation derived from the viewpoint of sediment budget with the bed load being taken to accounted. In doing so, the incipient motion of sediment is determined based on the Shields Diagram, while the bottom suspended sediment concentration, the bed load transport rate is figured out using the bottom shearing stress directly calculated from the numerically simulated flow field rather than the conventional quadratic law and frictional coefficient. In order to verify the proposed morphology model, we numerically simulate the nonlinear shoaling, breaking over the uniform beach of 1/m slope, and its ensuing morphology change. Numerical results show that the partially skewed, and asymmetric bottom shearing stresses can be successfully simulated. It was shown that sediments suspended and eroded at the foreshore by wave breaking are gradually drifted toward a shore and accumulated in the process of up-rush, which eventually leads to the formation of swash bar. It is also worth mentioning that the breaker bar formed by the sediments dragged by the back-wash flow which commences at the pinnacle of up-rush as the back-wash flow gets weakened due to the increased depth was successfully duplicated in the numerical simulation.

A Study on the Experience of Nursing Student's Clinical Education in School Practice: Focused on Psychiatric Nursing Practice (간호대학생의 임상실습 교과의 교내실습 경험연구: 정신간호학 실습을 중심으로)

  • Kim, Hyeun-sil;Kim, Eun-mi;Lee, Dong-suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.2
    • /
    • pp.169-178
    • /
    • 2021
  • This study is a qualitative study to explore the experiences of nursing students' psychological nursing practice in-school. The subjects of this study were 62 students who were the 3rd grade nursing students at a University in Gangwon-do. The data were collected from August 3rd to August 20th, 2020. For data analysis, Colaizzi's qualitative analysis method was applied. Six categories were derived from data analysis: 1) Lingering affection for clinical practice in field. 2) Achievement through learning 3) Fear of nurse's role in future 4) Burden for many tasks 5) Feeling free of stress from clinical practice in field 6) Importance of cooperation with other departments. The positive aspects of in-school practice education, which from nursing students' evaluation, were immediate feedback, detailed explanations, and indirect experiences. Based on this study result, it is recommended to develop in-school nursing practice education program for gap-reducing with clinical practice. It would be consisted of various contents: simulation, online/non-face-to-face practice, face-to-face practice for indirect experience. In addition, these multi-aspect effort is needed more in psychological nursing practice education to reduce the gap with clinical practice such as therapeutic communication and hallucination interventions.

Scale Effects of Initial Model and Material on 3-Dimensional Distinct Element Simulation (3차원 개별요소해석 시의 초기 모델 및 재료 스케일 영향)

  • Jeon, Jesung;Shin, Donghoon;Ha, Iksoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.7
    • /
    • pp.57-65
    • /
    • 2011
  • Numerical simulations by three-dimensional Particle Flow Code($PFC^{3D}$, Itasca) considering distinct element method (DEM) were carried out for prediction of triaxial compression test with sand material. The effect of scale conditions for numerical model and distinct material on final prediction results was analyzed by numerical models under various scale conditions, and following observations were made from the numerical experiments. It is very useful to model the initial material condition without any porosity conversion from 2-D to 3-D DEM. Numerical experiments have shown that in all cases considered, 3D distinct element modeling could provide good agreement on stress-strain behavior, volume change and strength properties with laboratory testing results. It was important thing to assess reasonable scale ratio of numerical model and distinct elements for saving calculation time and securing calculation efficiency under condition with accuracy and appropriateness as numerical laboratory. As results of DEM simulations under various scale conditions, most of results show that shear strength properties as cohesion and internal friction angle are similar in condition of $D_{mod}/D_{gmax}$ < 10. It shows that 3-D distinct element method could be used as efficient tool to assess strength properties by numerical laboratory technique.

A Study on Vortex-Induced Vibration Characteristics of Hydrofoils considering High-order Modes (고차모드를 고려한 수중날개 와류기인 진동특성 연구)

  • Choi, Hyun-Gyu;Hong, Suk-Yoon;Song, Jee-Hun;Jang, Won-Seok;Choi, Woen-Sug
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.377-384
    • /
    • 2022
  • Vortex-induced vibration (VIV) occurs owing to the vortex generated from the back side of the appendages of ships and submarines during operation. Recently, the importance of high-order modes (HOMs) vibration and fatigue failure has become increasingly emphasized by increasing the speed of ships and the size of structures. In addition, predicting the vibration of HOMs is significantly necessary as the VIV becomes stronger in the fast flow speed condition than in the low flow speed condition. This study introduces a methodology according to HOMs hybrid Fluid Structure Interaction (FSI) for predicting the HOMs VIV on the hydrofoils. The HOMs FSI system is verified by comparing the VIV results from the FSI simulation with the experimental results. Finally, the effectiveness of the HOMs FSI is determined by applying the maximum von-Mises stress obtained from the VIV on the hydrofoil to the S-N curve released from Det Norske Veritas (DNV). VIV results from the HOMs FSI include the lock-in characteristics as well as a significant increase of more than 10 times compared with that of low-order modes (LOMs) FSI. In the future works, advanced studies will be required for improving cantilever boundary conditions and the shape of hydrofoils.

Development of Numerical Computation Techniques for the Free-Surface of U-Tube Type Anti-roll Tank (U-튜브형 횡동요 감쇄 탱크의 자유수면 해석기법 개발에 관한 연구)

  • Sang-Eui Lee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1244-1251
    • /
    • 2022
  • Marine accidents due to a loss of stability, have been gradually increasing over the last decade. Measures must be taken on the roll reduction of a ship. Amongst the measures, building an anti-roll tank in a ship is recognized as the most simple and effective way to reduce the roll motion. Therefore, this study aims to develop a computational model for a U-tube type anti-roll tank and to validate it by experiment. In particular, to validate the developed computational model, the height of the free surface in the tank was measured in the experiment. To develop a computational model, the mesh dependency test was carried out. Further, the effects of a turbulence model, time step size, and the number of iterations on the numerical solution were analyzed. In summary, a U-tube type anti-roll tank simulation had to be performed accurately with conditions of a realizable k-𝜖 turbulence model, 10-2s time step size, and 15 iterations. In validation, the two cases of measured data from the experiment were compared with the numerical results. In the present study, STAR-CCM+ (ver. 17.02), a RANS-based commercial solver was used.